
1132 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 3, JUNE 2022

Optimal Caching for Low Latency in
Distributed Coded Storage Systems

Kaiyang Liu , Member, IEEE, Jun Peng , Senior Member, IEEE,

Jingrong Wang , Graduate Student Member, IEEE, and Jianping Pan , Senior Member, IEEE, ACM

Abstract— Erasure codes have been widely considered as a
promising solution to enhance data reliability at low storage costs.
However, in modern geo-distributed storage systems, erasure
codes may incur high data access latency as they require data
retrieval from multiple remote storage nodes. This hinders the
extensive application of erasure codes to data-intensive appli-
cations. This paper proposes novel caching schemes to achieve
low latency in distributed coded storage systems. Assuming that
future data popularity and network latency information are
available, an offline caching scheme is proposed to explore the
optimal caching solution for low latency. The proposed scheme
categorizes all feasible caching decisions into a set of cache
partitions, and then obtains the optimal caching decision through
market clearing price for each cache partition. Furthermore,
guided by the optimal scheme, an online caching scheme is
proposed according to the measured data popularity and network
latency information in real time, without the need to completely
override the existing caching decisions. Both theoretical analysis
and experiment results demonstrate that the online scheme can
approximate the offline optimal scheme well with dramatically
reduced computation complexity.

Index Terms— Distributed storage systems, erasure codes,
optimal caching.

I. INTRODUCTION

IN THE big data era, the world has witnessed the explosive
growth of data-intensive applications. IDC predicts that the

volume of global data will reach a staggering 175 Zettabytes
by 2025 [1]. Modern distributed storage systems, e.g., Amazon
Simple Storage Service (S3) [2], Google Cloud Storage [3],
and Microsoft Azure [4], use two redundancy schemes, i.e.,
data replication and erasure codes, to enhance data reliability.
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By creating full data copies at storage nodes near end users,
data replication can reduce the data service latency with good
fault tolerance performance [5], [6]. However, it suffers from
high bandwidth and storage costs with the growing number of
data replicas. With erasure codes, each data item is coded into
data chunks and parity chunks. Compared with replication,
erasure codes can lower the bandwidth and storage costs
by an order of magnitude while with the same or better
level of data reliability [7], [8]. However, erasure codes may
incur high access latency, especially in geo-distributed storage
systems, as end users need to contact remote storage nodes to
reconstruct the data [9]. The slowest chunk retrieval dominates
the data access latency. The high latency prevents the further
application of erasure codes to data-intensive applications,
limiting their use to rarely-accessed archive data [10].

As supplements to the geo-distributed storage system, major
content providers, e.g., Akamai and Google, deploy frontend
servers to achieve low latency [11]. End users issue requests
to the nearest frontend servers, which have cached a pool of
popular data items. Nevertheless, data caching faces critical
challenges in the distributed coded storage system. As data
items are coded into data chunks and parity chunks, the
caching scheme should determine which chunks to cache for
each data item. In fact, compared with caching the entire data
item, caching a smaller number of chunks has more scheduling
flexibility. To serve end users across the globe, the coded
chunks of each data item are spread at more storage nodes to
lower the latencies of geographically dispersed requests [11].
The latency of fetching different chunks varies as the coded
chunks may be placed at geographically diverse nodes. Since
the data request latency is determined by the slowest chunk
retrieval, the data chunks with higher access latency are cached
first. With a partial number of chunks cached, more data
items can enjoy the benefits of caching for latency reduction
considering the limited cache capacity of the frontend server.
Traditional caching schemes at the data item level are not
space efficient to achieve the lowest data access latency [13].

For a large-scale storage system, the goals of the caching
schemes are 1) achieving the lowest data access latency, 2)
highly efficient for a quick caching decision, and 3) flexible to
change the caching decision in an online fashion. In this paper,
we propose optimal offline and near-optimal online caching
schemes that are specifically designed for distributed coded
storage systems to achieve low latency. Preliminary experiment
results in Sec. IV-A show that a positive correlation exists
between the latency and the physical distance of data retrieval
over the wide area network (WAN). For any two geographi-
cally diverse storage nodes, the latency gap of accessing the
same data item keeps fairly stable. The average data access
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latency is used as the performance metric to quantify the
benefits of caching. To explore the lowest data access latency,
the offline scheme categorizes all feasible caching decisions
into a set of cache partitions based on the number of cached
chunks for each data item. Then, by applying the market
clearing price on all cache partitions, the optimal data item
assignment for cache partitions (or equivalently, the optimal
caching decision), can be obtained with theoretical guarantees.

Although theoretically sound in design, the optimal scheme
faces the challenges of long running time and large computa-
tion overheads when applied to a large-scale storage system.
The optimal scheme motivates the design of a practical online
caching scheme with low computation complexity. Based
on the measured data popularity and network latencies in
real time, the caching decision is updated upon the arrival
of each request, without completely overriding the existing
caching decisions. The theoretical analysis provides the worst-
case performance guarantees of the online scheme. The main
contributions in this paper include:

• A novel optimal caching scheme based on cache parti-
tions and market clearing price is designed with perfor-
mance guarantees, which can serve as the upper bound of
performance gain on latency reduction. To the best of our
knowledge, this is the first work that explores the optimal
caching solution to achieve low latency in the distributed
coded storage system.

• Guided by the optimal scheme, a near-optimal online
caching scheme is proposed to reduce the computation
complexity without sacrificing the performance of low
data access latency.

• The proposed caching schemes are extended to the case
of storage server failure.

• A prototype of the caching system is built based on
Amazon S3. Extensive experiment results show that when
compared with the optimal scheme, the online scheme
only incurs a performance loss of about 2% while with
greatly reduced computation overheads.

The rest of this paper is organized as follows. Sec. II
summarizes the related work. Sec. III presents the model of
the distributed coded storage system and states the caching
problem. Sec. IV and V provide the design of the optimal and
online caching schemes, respectively. Sec. VI evaluates the
efficiency and performance of the caching schemes through
extensive experiments. Sec. VII concludes this paper and lists
future work.

II. RELATED WORK

Caching at the data item level. Data caching has been
considered as a promising solution to achieve low latency
in distributed storage systems. Ma et al. [20] proposed a
replacement scheme that cached a full copy of data items
to reduce the storage and bandwidth costs while maintaining
low latencies. Liu et al. [26] designed DistCache, a distributed
caching scheme with provable load balancing performance
for distributed storage systems. Song et al. [14] proposed
a learning-based scheme to approximate Belady’s optimal
replacement algorithm with high efficiency [15]. However, all
these previous studies focus on caching at the data item level.
Due to the limited cache capacity, keeping a full copy of data
items may not be space efficient to achieve the lowest data
access latency with erasure codes.

Low latency in coded storage systems. Erasure codes have
been extensively investigated in distributed storage systems

as they can provide space-optimal data redundancy. However,
it is still an open problem to quantify the accurate service
latency for coded storage systems [13]. Therefore, recent
studies have attempted to analyze the latency bounds based on
queuing theory [13], [16]–[18]. These researches are under the
assumption of stable request arrival process and exponential
service time distribution, which may not be applicable to a
dynamic network scenario.

Prior work also focused on the design of data placement
and access schemes to achieve load balancing in coded storage
systems [7], [8], [19]. In this way, the data access latency could
be reduced by the avoidance of data access collision. These
scheduling schemes are designed for intra-data center storage
systems as the network congestion dominates the overall data
access latency. Instead, we address the problem of optimizing
the data access latency by considering caching on the frontend
server in the geo-distributed coded storage system. To be
more specific, this work minimizes the high latency of data
retrieval from remote storage nodes to end users over WAN,
which is also different from traditional caching schemes in
cellular networks [21] or cooperative caching in peer-to-peer
networks [22].

Caching in coded storage systems. Compared with
schemes that cache the entire data items, Aggarwal et al. [13]
pointed out that caching partial data chunks had more schedul-
ing flexibility. Then, a caching scheme based on augment-
ing erasure codes was designed to reduce the data access
latency. Nevertheless, extra storage overheads were introduced
with the augmented scheme. Halalai et al. [9] designed Agar,
a dynamic programming-based caching scheme to achieve
low latency in coded storage systems. Agar was a static
policy that pre-computed a cache configuration for a certain
period of time without any worst-case performance guarantees.
Rashmi et al. [12] applied an online erasure coding scheme
to data stored in the caching layer for latency reduction.
However, this online erasure coding scheme introduced extra
computation overheads when handling massive data requests.
Different from previous studies, our proposed caching schemes
leverage the measured end-to-end latency to quantify the
benefits of caching. Furthermore, the proposed schemes only
cache data chunks rather than parity chunks to avoid the
decoding overheads of data requests.

III. SYSTEM MODEL AND PROBLEM STATEMENT

This section presents the architecture of the geo-distributed
storage system with erasure codes and discusses how to reduce
the access latency of data requests with caching services.

A. Geo-Distributed Storage System and Erasure Codes

As shown in Fig. 1, the geo-distributed storage system
consists of a set of geographically dispersed storage nodes N
(with size N = |N |).1 The set of data items stored in the
system is denoted by M (with size M = |M|). Similar to
Hadoop [23] and Cassandra [24], all data items have a default
block size. To achieve the target reliability with the maximum
storage efficiency, the Reed-Solomon (RS) codes are adopted
as the storage scheme.2 With a linear mapping process, each

1The storage nodes could be data centers in practice. As shown in Fig. 1,
each storage node consists of multiple storage servers.

2Other erasure codes, e.g., local reconstruction codes (LRC) [25], can also
be applied in our solution.
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TABLE I

THE DEPLOYMENT OF STORAGE NODES OVER SIX AMAZON WEB SERVICES (AWS) REGIONS AND THE AVERAGE DATA ACCESS
LATENCY (IN MILLISECONDS) FROM REMOTE STORAGE NODES TO END USERS AT THREE DIFFERENT LOCATIONS

Fig. 1. An illustration of the distributed coded storage system with caching
services is shown. Data items A and B are coded into K = 6 data chunks
and R = 3 parity chunks.

data item is coded into equal-sized K data chunks and R parity
chunks. All coded chunks are distributed among storage nodes
for fault tolerance, which are denoted by�

mk → i, k ∈ {1, . . . , K}, i ∈ N ,

mr → j, r ∈ {1, . . . , R}, j ∈ N ,
(1)

which represents chunk mk and mr are placed at node i and j,
respectively.3 Please note that the coded chunks are not placed
at a single storage node since this will increase the data access
latency of end users far from that node.

If the requested data is temporarily unavailable, the original
data can be recovered by the decoding process from any K out
of K + R chunks. The decoding process with parity chunks
will inherently incur considerable computation overheads to
the storage system. Generally speaking, a read request is
first served by obtaining K data chunks to reconstruct the
original data with low overheads [7]. The action of parity
chunk retrieval for decoding is defined as degraded read.
The degraded read is passively triggered 1) when the storage
server storing the data chunks is momentarily unavailable,
or 2) during the recovery of server failure. Moreover, the
data write/update process is not considered in this paper, since
most storage systems are append-only where all data items are
immutable. Instead, data with any updates will be considered
as separate items with new timestamps [7].

Erasure codes may incur high data access latency in the
geo-distributed storage system. The requested chunks are
retrieved by accessing multiple remote storage nodes. The high
latency impedes the extensive application of erasure codes
to data-intensive applications. Therefore, it is imperative to
reduce the data request latencies in the coded storage system.

3In this paper, data replication at the remote storage nodes is not considered
to achieve low storage overheads. Our design is also applicable to the scenario
of data replication. The data request is fulfilled by retrieving K data chunks
from the closest storage nodes.

B. Caching at Frontend Servers for Low Latency

This paper adopts caching to achieve low latency data
services. As illustrated in Fig. 1, multiple frontend servers
are deployed to serve geographically dispersed end users.
Each frontend server creates an in-memory caching layer to
cache popular data items near end users. Instead of interacting
directly with remote storage nodes, end users retrieve data
from the frontend server. Let C denote the cache capacity of
the frontend server. Due to the scarcity of memory, not all data
chunks can be cached in the caching layer, i.e., C ≤MK .

With erasure codes, we may not need to cache all chunks
of each data item to achieve the lowest data access latency.
This can be demonstrated through preliminary experiments
based on Amazon S3. As shown in Fig. 1, a prototype of
the coded storage system is deployed over N = 6 Amazon
Web Services (AWS) regions, i.e., Tokyo, Ohio, Ireland, São
Paulo, Oregon, and Northern California. In each AWS region,
three buckets are created. Each bucket represents a server
for remote data storage. The storage system is populated with
M = 1, 000 data items. The numbers of data and parity chunks
are set as K = 6 and R = 3. The default size of all chunks
is 1 MB [9]. For each data item, the nine coded chunks are
uniformly distributed among eighteen buckets to achieve
load balancing. The coded chunks of each data item are not
placed on the same server to guarantee the R-fault tolerance.
As noted in prior work [7], [12], the popularity of data items
follows a Zipf distribution.

Furthermore, three frontend servers are deployed near the
end users at various locations, i.e., Victoria, Canada, San Fran-
cisco, United States, and Toronto, Canada. Memcached [27]
module is adopted for data caching in RAM. The frontend
server uses a thread pool to request data chunks in parallel.
For each read request, the end user needs to obtain all six
data chunks from remote buckets without caching on the
frontend server. Table I shows the average data access latency
from remote buckets to end users.4 For data requests, the
latency is determined by the slowest chunk retrieval among
all chunks. As shown in Fig. 1, if data item B (including
data chunk B1–B6) is requested from the frontend server in
Victoria, the latency is about 479.3 ms as we need to fetch
data chunk B5 and B6 from the farthest storage node in Tokyo.

Then, let us consider the performance of latency reduction
with caching services on the frontend server. In our design,
only data chunks will be cached to avoid degraded read. Let
Li denote the average network latency of data access from
storage node i to end users. According to the storage location

4The data access latency includes the network latency from remote storage
nodes to the frontend server, the data reconstruction latency, and the network
latency from the frontend server to end users. The frontend servers could be
deployed in close proximity to end users with low data access latency [28].
Compared with the high network latency over WAN (in hundreds of millisec-
onds), the reconstruction latency with data chunks and the network latency
from the frontend server to end users are negligible.
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Fig. 2. Experiment results show the average access latency of caching
different numbers of data chunks on the frontend server in Victoria. The
relationship between the number of cached data chunks and the reduced
latency is nonlinear. The storage locations of data items A and B are shown
in Fig. 1.

information in (1), the average latency of sending data chunk
mk is given by

lmk
= Li · 1(mk → i), (2)

where 1(mk → i) indicates whether data chunk mk is placed
at node i or not, returning 1 if true or 0 otherwise, k ∈
{1, . . . , K}, i ∈ N . For ease of notation, data chunks are
re-labeled in the descending order of the data chunk access
latency, i.e., lm1 ≥ . . . ≥ lmK . For data item m, data
chunk with higher access latency is cached first. Then, the
data access latency can be progressively decreased. Fig. 2
shows the average access latency of caching different numbers
of data chunks on the frontend server in Victoria. Let λm

denote the number of cached data chunks for data item m,
λm ∈ {0, . . . , K}, m ∈M. The discrete latency function can
be defined as follows:

fm(λm) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lm1 , λm = 0,

. . .

lmk
, λm = k − 1,

. . .

0, λm = K.

(3)

We have the following two observations:
• The access latency function fm(λm) is nonlinear.
• The storage locations of chunks may be different for

various data items, e.g., data items A and B in Fig. 1. For
various data items, the access latency function fm(λm)
could also be different due to the diverse storage loca-
tions. For instance, if three chunks are cached for data
item A, the data access latency is reduced by 40.3%. For
data item B, three cached data chunks can reduce the
latency by 62.6%.

The observations show that the latency reduction varies from
data item to data item. Traditional caching schemes at the data
item level are not space efficient to achieve low latency.

C. Caching Problem Statement

To minimize the overall latency of data read requests on
a frontend server, the number of cached chunks λm for each
data item should be optimized as follows5:

min
λm∈N,m∈M

�
m∈M

fm(λm) · rm

s.t. 0 ≤ λm ≤ K,�
m∈M λm ≤ C, (4)

5For data item m, λm data chunks placed at the farthest storage nodes, i.e.,
with the highest data access latencies, will be cached.

where rm denotes the user request rate for data item m.
Constraint 0 ≤ λm ≤ K ensures that the number of cached
chunks for each data is no larger than the number of coded
data chunks. Furthermore,

�
m∈M λm ≤ C ensures that the

cache capacity constraint is not violated. Then, the hardness
of the optimization problem (4) is examined as follows:

• Experiments demonstrate that fm(λm), e.g., the latency
function of data item B in Fig. 2, could be both nonlinear
and non-convex. Therefore, problem (4) is an integer
programming problem with non-convexity and nonlinear-
ity. At the fundamental level, the difficulty of solving
non-convex nonlinear programming lies in the fact that
the local optimal solutions may not necessarily be the
global optimal solution. Relaxing the integer constraint
λm ∈ N to continuous constraint λm ∈ R, and then
rounding the obtained results to the nearest integers
is not a simple or always feasible solution. Generally
speaking, complex combinatorial techniques are needed
for an efficient solution [29].

• In a dynamic scenario, the network conditions and the
data request rates may be time variant. It is a challenge
to design online schemes that can react quickly to real-
time changes.

IV. OPTIMAL CACHING SCHEMES DESIGN

In this section, the motivation and design overview are
presented. Then, assuming that future data popularity and
network condition information is available, an offline scheme
is designed to find the optimal caching solution for low data
access latency.

A. Motivation and Design Overview

As mentioned in Sec. III-B, the latency function fm(λm)
can be different for various data items. Considering the diver-
sity of chunk storage locations, it is complicated to design a
mathematical latency model that is suitable for the entire stor-
age system. Therefore, the end-to-end latency of data access is
used to quantify the benefits of caching. Through experiments,
we analyze the characteristics of data access latencies over
WAN. Based on the deployed experiment platform, the access
latencies of data chunk retrieval from remote buckets to
end users are measured over an hour (from 15:00 to 16:00 on
July 30, 2020). Fig. 3(a), (b), and (c) show that the data access
latencies over WAN remain fairly stable in the long term as
the propagation delay dominates and depends primarily on the
physical distance of data transmission [30]. Experiment results
confirm the positive correlation between physical distance and
latency. For instance, the data access latency from São Paulo to
end users in Victoria is always higher than that from Oregon.

Fig. 3(d), (e), and (f) demonstrate that the data access
latencies are stable for most of the service time. For example,
89.58% of the data access latencies from Oregon to Victoria
will be in the range of [100, 140] ms. Besides, 91.94% of
the data access latencies from Ireland to Victoria will be
in the range of [650, 700] ms. For two arbitrary storage
nodes, the latency gap also keeps fairly stable in the long term.
The average data access latency can be used to quantify the
benefits of caching. In Sec. IV-B, assuming that future data
popularity and network condition information are available,
an offline scheme is designed to explore the optimal caching
solution on latency reduction.
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Fig. 3. Experiment results show the data access latencies from storage nodes to end users over a period of one hour (from 15:00 to 16:00 on July 30, 2020).

B. Optimal Caching Scheme

Based on the latencies of data chunk access {lm1, . . . , lmK},
a (K + 1)-dimensional array is maintained for each data item

{τm,0, τm,1, . . . , τm,K}
= {0, (lm1 − lm2) · rm, . . . , (lm1

−lmk
) · rm, . . . , (lm1 − lmK ) · rm, lm1 · rm}, (5)

where τm,k−1 = (lm1 − lmk
) · rm represents the value of

reduced latency when k − 1 data chunks are cached. For
example, if chunk m1 and m2 are cached, then lm3 becomes
the bottleneck. Clearly, τm,0 = 0 as no latency will be reduced
without caching. When all K data chunks are cached, the
maximum value of reduced latency is τm,K = lm1 ·rm. Based
on the reduced latency information, an M×(K +1) valuation
array τ can be maintained for all data items. As shown in
Fig. 2, fm(λm) is a monotonic decreasing function. Mini-
mizing the overall data access latency in (4) is equivalent to
maximizing the total amount of reduced latency:

max
λm∈N,m∈M

Θ(λm) =
�

m∈M
τm,λm

s.t. 0 ≤ λm ≤ K,�
m∈M

λm = C. (6)

As C ≤MK ,
�

m∈M λm = C ensures the cache capacity
can be fully utilized for latency reduction. Problem (6) is
hard to be solved. Intuitively, the optimal solution can be
obtained through exhaustive search. However, for the M ×
(K + 1) valuation array τ , the exhaustive search evaluates
every possible caching solution with an unacceptable compu-
tation complexity of O(2M·(K+1)). To improve the solution
efficiency without sacrificing the performance of low data
access latency, we design a novel scheme based on cache
partitions and market clearing price to find the optimal caching
decision.

Algorithm 1 Iterative Search for Cache Partitions
Input: Cache capacity C, number of coded data chunks K ,

number of data items M .
Output: Set of cache partitions χ.
Initialization: x1 ← C, ∀xk ← 0, k ∈ {2, . . . , K}, χ← ∅.
1: while {x1, . . . , xK} /∈ χ do
2: Add {x1, . . . , xK} to χ if

�K
k=1 xk ≤M ;

3: x2 ← x2 + 1 if x2 < x̂2 else x2 ← 0;
4: for k = 3 to K do
5: if xk−1 is reset to 0 then
6: xk ← xk + 1 if xk < x̂k else xk ← 0;
7: end if
8: x1 = C −

�K
k=2 kxk;

9: end for
10: end while

1) Cache Partitions: Let xk denote the number of data items
with k data chunks cached, i.e.,

xk =
�

m∈M 1(λm = k), (7)

where 1(λm = k) indicates whether k data chunks are cached
for data item m or not. We define {x1, x2, . . . , xK} as a
potential partition of caching decisions, ∀xk ∈ N. Based on
the constraints in (6), we have the Diophantine equations as
follows �

x1 + 2x2 + . . . + KxK = C,

x1 + x2 + . . . + xK ≤M.
(8)

All partitions of caching decisions χ can be derived
from (8) through iterative search. The pseudo code of the
iterative search is listed in Algorithm 1. Given the value of
{xk+1, . . . , xK}, the maximum value that xk can be assigned
is

x̂k =

	
C −

�K
n=k+1 nxn

k



. (9)
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Initially, {x1, x2, . . . , xK} = {C, 0, . . . , 0} is a feasible
solution if

�K
k=1 xk = C ≤ M . We gradually increase the

value of x2 from 0. If x2 = x̂2, x2 is reset to 0 in the next
step. In this way, the value of xk can be iteratively determined,
k ∈ {3, . . . , K}. If xk−1 = 0, xk is incremented by 1 next.
If xk = x̂k, xk is also reset to 0 then. Based on the value of
{x2, . . . , xK}, x1 is set to C−

�K
k=2 kxk. We repeat the above

process until all cache partitions are included in χ. A simple
example is used to demonstrate the iterative search process.
Let K = 3 and C = 5. Algorithm 1 sequentially appends five
cache partitions, i.e., {5, 0, 0}, {3, 1, 0}, {1, 2, 0}, {2, 0, 1},
and {0, 1, 1}. The theoretical analysis of the iterative search
algorithm is provided as follows.

Proposition 1: The size of set χ is no larger than�K
k=2(

�
C
k


+ 1).

Proof: According to (8), as ∀xk ∈ N, the maximum
value of xk is

�
C
k


. Therefore, xk can be assigned up to�

C
k


+1 different values. As {x2, . . . , xK} cannot be assigned

to the maximum values at the same time, the while loop in
Algorithm 1 is performed for no more than

�K
k=2(

�
C
k


+ 1)

times to generate a complete set of cache partitions χ. The set
size |χ| ≤

�K
k=2(

�
C
k


+ 1) also holds. �

Algorithm 2 Optimal Assignment for Cache Partitions
Input: Set of cache partitions χ, valuation array τ , market

clearing price pm.
Output: Caching decision λm.
Initialization: ∀λm, λ̂m, pm ← 0.
1: for Cache partition {x1, . . . , xK} ∈ χ do
2: G ← preferred_seller_graph(τ, {x1, . . . , xK});
3: {M[c],K[c]} ← constricted_set(G);
4: τ � ← τ ;
5: while {M[c],K[c]} 	= ∅ do
6: for m ∈M[c] do
7: for k ∈ K[c] do
8: Vk ← sum_top(τ �(:, k), xk);
9: V m

k ← sum_top(τ �(:, k) \ {τ �
m,k}, xk);

10: end for
11: pm ← pm + max{1, max{Vk − V m

k }};
12: τ �(m, :)← τ(m, :)− pm;
13: end for
14: G ← preferred_seller_graph(τ �, {x1, . . . , xK});
15: {M[c],K[c]} ← constricted_set(G);
16: end while
17: λ̂m ← k according to G;
18: ∀λm ← λ̂m if

�
m∈M τm,λm <

�
m∈M τm,λ̂m

;
19: end for

2) Optimal Assignment for Cache Partitions: Recall that
each element xk in a cache partition {x1, . . . , xK} represents
that xk data items are selected, each of which cached k
chunks on the frontend server. For example, if data item m is
assigned to xk , the caching decision for m becomes λm = k.
As shown in Fig. 4, the data items and cache partition can be
treated as sellers and buyers, respectively. According to the
valuation array τ , each buyer has a valuation for each data
item. Thus, the optimal assignment can be considered as a
market competing for data items with higher valuations. The
pseudo code of the optimal assignment is listed in Algorithm 2.

Fig. 4. An illustration of the data item assignment for data partition is shown.

As shown in Fig. 4, buyers may compete for a certain
data item. The basic idea is to increase the price pm of data
item m until the competition is over. The price pm is known as
market clearing price [31]. With no competition, the local
optimal caching decision λ̂m can be obtained for a certain
cache partition. The global optimal assignment is the one that
has the maximum valuation among all cache partitions in χ.

Let τ(:, k) denote the k-th column of τ , which represents
the reduced latencies of all data items when k data chunks
of that data item are cached. To maximize the caching bene-
fits, function preferred_seller_graph matches sellers and
buyers with the largest xk elements in τ(:, k). As shown
in Fig. 4(a), a preferred seller graph G is constructed with
function preferred_seller_graph. In G, different buyers
may compete for the same data item, while each data item
can only be assigned to one buyer. Then, the constricted set
{M[c],K[c]} is constructed with function constricted_set,
where M[c] denotes the set of competed data, and K[c]

represents the set of competing buyers. Then, we show how
to set the market clearing price pm for each data m ∈ M[c].
We initialize pm = 0, ∀m ∈ M. Then, the payoff array τ �
can be initialized as the valuation array τ with τ � ← τ . Let
Vk denote the total payoff of assigning data items (including
the competed data item m) to buyer xk ∈ K[c], i.e.,

Vk = sum_top(τ �(:, k), xk), (10)

where function sum_top(τ �(:, k), xk) represents the sum of
largest xk elements in set τ �(:, k). Then, if data item m is not
assigned to xk , the total payoff is given by

V m
k = sum_top(τ �(:, k) \ {τ �

m,k}, xk). (11)

If max{Vk−V m
k } > 0 for all buyers in K[c], pm is incremented

by max{Vk−V m
k }. If max{Vk−V m

k } = 0, pm is incremented
by the unit price 1.

pm+ = max{1, max{Vk − V m
k }}. (12)

Remark 1: In [31], when multiple buyers are competing for
a seller m, its price pm is always increased by one unit in
each round of pricing. Multiple buyers may still compete for
m with the increased price. In contrast, the proposed pricing
method in (12) ensures that m will be assigned to only one
buyer k = arg max{Vk−V m

k } in each round of pricing, which
improves the solution efficiency.

Then, the payoff of m for all buyers τ �(m, :) is updated
as τ(m, :) − pm. The above process is repeated until the
constricted set is empty. Then, the updated preferred seller
graph with no competition is added to the existing assignment.
If the local caching decision λ̂m for the current cache partition
yields a higher payoff than all previous ones, the global
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caching decision is updated with λm ← λ̂m. The theoretical
analysis of the assignment algorithm is provided as follows.

Theorem 1: The pricing of data items in Algorithm 2 must
come to an end with an empty constricted set, i.e., buyers will
not compete for the same seller.

Proof: In Algorithm 2, the while loop (Line 5 – 16) ends
if the constricted set is empty with a set of market-clearing
prices; otherwise, the while loop continues with increased
prices pm ≥ 0, m ∈ M.

However, the prices cannot be increased forever without
stop. This is because the “potential energy” which drives the
pricing process is draining out as the algorithm runs. The
potential of a seller is defined as the current price pm she
is charging. For any current set of prices, the potential of a
buyer is the maximum payoff she can currently get from any
seller, i.e., Vk in (10). Please note that these are the potential
payoffs. The buyer and seller will actually get the payoffs if
the constricted set is empty with no competition. Finally, the
overall potential energy P is defined as the sum of the potential
of all buyers and sellers.

P =
�K

k=1
Vk +

�M

m=1
pm (13)

Then, we prove that P has the following two properties:
1) The overall potential energy is never less than 0, i.e.,

P ≥ 0. Let {m, xk} be an arbitrary assignment in the preferred
seller graph G. This means that seller m is assigned to buyer
xk to maximize the total amount of reduced latency. Then,
we have the following two different cases:

• If {m, xk} /∈ {M[c],K[c]}, no other buyers are competing
for seller m. For {m, xk}, the potential energy of buyer
and seller is

τ �
m,k + pm = τm,k ≥ 0. (14)

This means P ≥ 0 holds.
• If {m, xk} ∈ {M[c],K[c]}, other buyers are compet-

ing for seller m. Let xk� be an arbitrary competitor,
{m, xk�} ∈ {M[c],K[c]}.

τ � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
. . . τm,k − pm . . . τm,k� − pm . . .

...
. . . τn,k − pn . . . τn,k� − pn . . .

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(15)

As shown in (15), for an unassigned data item n which
is not in the preferred seller graph G, we have

τm,k� − pm ≥ τn,k� − pn. (16)

For {m, xk}, the potential energy is τ �
m,k + pm =

τm,k ≥ 0. For xk� and n, the potential energy is

τ �
m,k + pn = τm,k� − pm + pn ≥ τn,k� ≥ 0. (17)

As x1 + x2 + . . . + xK ≤ M , we can always find a
unique unassigned data item for each competitor with the
potential energy no less than 0. For all other unassigned
data items, we have pn ≥ 0, n ∈M. Then, based on (14)
and (17), the overall potential energy P ≥ 0 also holds.

2) The overall potential energy P decreases when the prices
increase. Initially, we set pm = 0, ∀m ∈ M. It begins with

all sellers having potential 0, and all buyers having a potential
equal to the maximum valuation P0.

P0 =
�K

k=1
sum_top(τ(:, k), xk) (18)

Then, when the seller in the constricted set raises the price
by at least one unit, the potential of the seller goes up by at
least one unit. At the same time, the potential of each buyer
in the constricted set goes down by at least one unit. Since
more buyers are competing for the seller, the overall potential
energy also goes down by at least one unit.

To sum up, the pricing scheme starts at a certain potential
energy P0, and it cannot drop below 0. So the pricing of
data items must come to an end with P0 steps at most. The
constricted set is empty with a set of market-clearing prices.

�
Theorem 2: Algorithm 2 yields the optimal caching deci-

sion on latency reduction.
Proof: Firstly, we prove that the optimal decision can be

obtained for each cache partition. This is equivalent to proving
that interchanging any two pairs of caching decisions cannot
further increase the total valuations. Let m and m� denote two
randomly selected data items in G. With Algorithm 2, let k
and k� denote their corresponding number of cached chunks.
To verify optimality, we need to prove

τm,k + τm�,k� ≥ τm�,k + τm,k� . (19)

If k and k� are not in the constricted set, i.e., τm,k ≥ τm�,k
and τm�,k� ≥ τm,k� , we have τm,k + τm�,k� ≥ τm�,k + τm,k� .
If k and k� are in the constricted set of m in the previous
while loop6 and m is finally assigned to k, we have

Vk − V m
k ≥ Vk� − V m

k� . (20)

Besides, m� is finally assigned to k� with no competition, i.e.,
τm�,k is not one of the largest xk elements in set τ �(:, k).
We have �

Vk − V m
k ≤ τm,k − τm�,k,

Vk� − V m
k� = τm,k� − τm�,k� .

(21)

This means

τm,k − τm�,k ≥ τm,k� − τm�,k� , (22)

which concludes that the optimal caching decision is obtained
for the cache partition. As all partitions in χ are considered,
Algorithm 2 yields the global optimal caching decision. �

Proposition 2: The computation complexity of Algorithm 2
is no larger than O(MKP0

�K
k=2(

�
C
k


+ 1)).

Proof: To obtain the preferred seller graph, all columns
in τ are sorted via the radix sort algorithm. The sorting
complexity is O(MK) (Line 2). Then, all data items need
to be considered to determine the constricted set with the
complexity of O(M) (Line 3). As all buyers may compete
for a data item, the calculation of the market clearing price
needs K steps at most (Line 6–12). Furthermore, the preferred
seller graph and the constricted set are updated with the
complexity of O(M + MK) (Line 14–15). As discussed
above, the while loop is performed for P0 times at most.
Furthermore, the data item assignment in Line 17 and 18
needs K steps at most. The optimal assignment for a cache
partition needs (MK + M + K)P0 + MK + M + K steps
at most. The computation complexity for a cache partition
is O(MKP0). Considering all cache partitions in χ, the

6The case of data item m′ can be proved in the same way.
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computation complexity of Algorithm 2 is no larger than
O(MKP0

�K
k=2(

�
C
k


+ 1)). �

The computation complexity of Algorithm 2 is mainly
determined by the total number of cache partitions |χ|. Based
on the experiment platform deployed in Sec. III-B, Table III in
Sec. VI-B shows the number of cache partitions |χ| and the
average running time (ART) of Algorithm 2 under different
settings. The number of required iterations |χ| and the ART
increase rapidly with the increase of cache capacity C and the
number of coded data chunks K . This means that Algorithm 2
may incur a heavy computation burden for a large-scale
storage system. Furthermore, the long running time implies
that the optimal scheme cannot react quickly to real-time
network changes. The network states may change before
caching decisions can be updated. To sum up, the optimal
scheme is an offline solution with the requirement of future
data popularity and network condition information.

V. ONLINE CACHING SCHEME DESIGN

Guided by the optimal caching scheme in Sec. IV-B,
an online caching scheme is proposed with no assumption
about future data popularity and network condition informa-
tion. Furthermore, we extend the proposed caching schemes
to the case of storage server failure.

A. Online Caching Scheme

Let T denote the whole data service period. The online
scheme updates the caching decision according to the mea-
sured data popularity rt

m and network latencies Lt
i in real

time, t ∈ T . The valuation {τm,0, τm,1, . . . , τm,K} is updated
according to the latest measurement of data access latency Lt

i
and request rate rt

m.
Data Popularity: The Discounting Rate Estimator

(DRE) [32] method is applied to construct the real-time
request information rt

m. On the frontend server, a counter is
maintained for each data item, which increases with every
data read, and decreases periodically with a decay factor αr.
The benefits of DRE are as follows: 1) it reacts quickly to
the request rate changes, and 2) it only requires O(1) space
and update time to maintain the prediction for each counter.

Network Latency: Similar to [5], the Exponentially
Weighted Moving Average (EWMA) method [33] is used
to estimate the average network latency of data requests.
Specifically, after a data read operation, Lt

i is updated by

Lt
i = αl · Lt

i + (1− αl) · ιi, (23)

where ιi is the measured end-to-end latency of a data request,
and αl is the discount factor to reduce the impact of previous
requests. The advantage of EWMA is that it only needs O(1)
space to maintain the prediction for each storage node.

The long-tested techniques DRE and EWMA are used to
estimate the future data popularity and network latency infor-
mation, which have been widely adopted in real-world appli-
cations with low implementation overheads. Recent advances
in future information prediction, e.g., Least Hit Density
(LHD) [34] and Learning Relaxed Belady (LRB) [14], could
also be applied in our solution.

Let Γ denote the set of data requests in the service
period T . To ensure the adaptivity of our design, the caching
decision is updated upon the arrival of each request γt

m,
γt

m ∈ Γ, t ∈ T . The challenge of designing an online

caching scheme is how to reduce the computation complexity
without sacrificing the performance of low data access latency.
To improve the solution efficiency, a common practice is to
choose a subset of replacement candidates from the caching
layer, with no need to completely override the existing caching
decisions. For example, Hyperbolic [35] and LRB [14] ran-
domly sample cached contents to obtain replacement can-
didates, which may result in arbitrarily bad performance.
In contrast, we select the cached contents with the lowest
valuations per unit as the replacement candidates, with which
the worst-case performance guarantee can be derived. Then,
close-to-optimal caching decisions can be obtained by apply-
ing the proposed optimal scheme to the set of replacement
candidates. The pseudo code of the online caching scheme is
listed in Algorithm 3, which makes a good balance between
the computation complexity and data access latency.

Algorithm 3 Online Caching Scheme
Input: Cache capacity C, number of coded data chunks K ,

number of data items M , valuation array τ , set of data
requests Γ in period T .

Output: Set of cached data items M̂, online caching decision
λt

m, m ∈M.
Initialization: M̂ ← ∅, ∀λt

m ← 0.
1: for Data request γt

m ∈ Γ, t ∈ T do
2: Update {τm,0, τm,1, . . . , τm,K} according to (2) and (5);
3: if

�
n∈M λt

n ≤ C −K and λt
m < K then

4: λt
m ← K , add m to M̂;

5: else if
�

n∈M λt
n > C −K and λt

m < K then
6: M̂� ← {m};
7: repeat
8: n← argminn∈M̂\M̂�{ τn,k

k }, add n to M̂�;
9: until K ≤ C −

�
n∈M̂ λt

n +
�

n�∈M̂� λt
n� ≤ 2K − 1

10: ∀λt
n� ← 0, n� ∈ M̂�;

11: Invoke Algorithm 1 for cache partition set χ̂ based on
the available cache capacity;

12: Invoke Algorithm 2 to update the caching decisions
λt

n� based on M̂� and χ̂, n� ∈ M̂�;
13: Update M̂, remove n from M̂ if λt

n = 0, ∀n ∈ M̂�;
14: end if
15: end for

Let M̂ denote the set of already cached data items. If the
cache capacity is not fully utilized, i.e.,

�
n∈M̂ λt

n ≤ C −K ,
all K data chunks of the requested data item m should be
cached for latency reduction. In contrast, if

�
n∈M̂ λt

n >
C −K , we need to determine 1) whether data item m should
be cached or not, 2) how many chunks for m should be cached,
and 3) which data items in M̂ should be replaced? To solve
this problem, the data items in M̂ with the lowest valuations
per unit are added into subset M̂�. The data items in M̂� are
expected to be replaced first by the requested data item m to
maximize the total amount of reduced latency. Furthermore,
m is also added into M̂�. All data items in M̂� are cache
replacement candidates. The cached data items in M̂ are
gradually added into M̂� until the available cache capacity
C −

�
n∈M̂ λt

n +
�

n�∈M̂� λt
n� ≥ K . This guarantees that

all K data chunks of m have a chance to be cached. The
expansion of M̂� needs K steps at most with |M̂�| ≤ K + 1
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and C −
�

n∈M̂ λt
n +

�
n�∈M̂� λt

n� ≤ 2K − 1. Based on the
available cache capacity, Algorithm 1 is invoked to calculate
the cache partition set χ̂. Then, based on subset M̂� and χ̂,
Algorithm 2 is invoked to update the caching decisions λt

n,
n ∈ M̂�. The theoretical analysis of the online scheme is
provided as follows.

Theorem 3: If the data request arrivals are stationary and
follow a Zipf distribution, Algorithm 3 yields the worst-case
approximation ratio of 1− 2K−1

C .

Proof: In Algorithm 3, DRE can accurately track data
popularities when data request arrivals are stationary and
highly skewed [32]. The greedy selection of M̂� (Line 8)
may incur performance loss. Let λt

m = k denote the caching
decision obtained with Algorithm 3 for request γt

m, 0 ≤
k ≤ K . Then, we consider the following two different cases:

1)
�

n∈M̂�\{m} τn,λt
n
≤ τm,K : Since Algorithm 2 is

invoked, Algorithm 3 outputs the optimal decision for subset
M̂�. As τm,k ≤ τm,K , the obtained objective value Θ satisfies

Θ ≥
�

n∈M̂ τn,λt
n
−

�
n∈M̂�\{m} τn,λt

n
+ τm,K . (24)

The global optimal objective value satisfies

Θ∗ ≤
�

n∈M̂ τn,λt
n

+ τm,K . (25)

Due to the greedy selection,
τn�,λt

n�
λt

n�
≤

τn,λt
n

λt
n

holds, ∀n� ∈
M̂�, ∀n ∈ M̂ \ M̂�. As

�
n∈M̂� λt

n ≤ 2K − 1, we have�
n∈M̂ τn,λt

n

C
≥

�
n∈M̂�\{m} τn,λt

n

2K − 1
. (26)

The worst-case performance bound is given by

Θ
Θ∗ ≥

C − 2K + 1
C

. (27)

2)
�

n∈M̂�\{m} τn,λt
n

> τm,K : In this case, we have

Θ∗ <
�

n∈M̂ τn,λt
n

+ τm,K

<
�

n∈M̂ τn,λt
n

+
�

n∈M̂�\{m} τn,λt
n
. (28)

As Θ ≥
�

n∈M̂ τn,λt
n

, we have

Θ
Θ∗ >

�
n∈M̂ τn,λt

n�
n∈M̂ τn,λt

n
+

�
n∈M̂�\{m} τn,λt

n

>
C

C + 2K − 1
.

(29)

As K ≥ 1, we have C
C+2K−1 > 1 − 2K−1

C . The proof
completes. �

In large-scale storage systems, the number of coded data
chunks per data item K is much smaller than the cache
capacity C, i.e., K 
 C. Therefore, Theorem 3 shows that
Algorithm 3 can approximate the optimal solution well.

Remark 2: Our design can be applied to general
time-varying data request distributions. Previous work shows
that DRE is (C+

�
log(1−αr)

log αr

�
−1)-competitive, where αr is the

decay factor [36]. Therefore, Algorithm 3 yields the worst-case
approximation ratio of (1− 2K−1

C ) · 1

C+� log(1−αr)
log αr

�−1
upon the

arrival of time-varying data requests.
Proposition 3: For a data request, the computation com-

plexity of Algorithm 3 is no larger than O(K2P0K!).

TABLE II

THE MAXIMUM NUMBER OF CACHE PARTITIONS max|χ̂| WITH
THE VARIATION OF NUMBER OF CODED DATA CHUNKS

Proof: For any data requests, we have |M̂�| ≤ K + 1
and C −

�
n∈M̂ λt

n +
�

n�∈M̂� λt
n� ≤ 2K − 1. According to

Proposition 1, the set size |χ̂| <
�K

k=2(
�

2K−1
k


+ 1) holds.

As 2K−1
k < K − k + 2, k ∈ {2, . . . , K}, we have

�
2K−1

k


+

1 ≤ K−k+2. Therefore, |χ̂| < K! holds. Furthermore, similar
to the analysis in Proposition 2, the computation complexity
for a cache partition is O(K2P0). The computation complexity
of Algorithm 3 is no larger than O(K2P0K!). �

The computation complexity of Algorithm 3 is also deter-
mined by the number of cache partitions |χ̂|. As discussed
in Proposition 1, the values of a cache partition cannot be
assigned to the maximum values at the same time. Therefore,
K! is only the upper bound of |χ̂| in theory. Table II shows
the maximum number of cache partitions max|χ̂| generated
by Algorithm 1 with the increase of K . The main observation
is that max|χ̂| increases much slower than K! in practice.
Moreover, K is not set to a large number in the practi-
cal storage system [13], [19]. Therefore, Algorithm 3 has
low computational complexity, which ensures that the online
scheme can react quickly to real-time changes.

B. Caching With Server Failure

In practice, servers may experience downtime in the distrib-
uted storage system. In this subsection, the proposed caching
schemes are extended to the case of storage server failure.
Let Mi denote the set of remotely unavailable data chunks
when a storage server at node i fails. Recall that we need
exactly K chunks to reconstruct a data item. If data chunk
mk ∈ Mi is not cached beforehand, the degraded read is
triggered to serve the data requests. The parity chunk mr with
the lowest data access latency will be fetched from node j for
data reconstruction. The unavailable data chunk mk is replaced
by parity chunk mr, i.e., mk ← mr and ltmk

← ltmr
. Similar

to (2), the average latency of sending mr is given by

ltmr
= min{Lt

j · 1(mr → j)}. (30)

When Algorithm 2 or 3 suggests caching mr, the recovered
data chunk mk (instead of mr) is directly added into the
caching layer. In this way, the parity chunk mr is not always
required to reconstruct data item m. Compared with existing
work which caches parity chunks [9], our design can reduce
the decoding overheads of the subsequent data requests.

VI. EXPERIMENTAL EVALUATION

In this section, we build a prototype of the caching system
in Python and then integrate it with the experiment plat-
form deployed in Sec. III-B. Next, extensive experiments are
performed to quantitatively evaluate the performance of the
proposed optimal and online caching schemes.

Experimental Setup: We deploy eighteen buckets in
N = 6 AWS regions. Each bucket denotes a remote storage
server. The library zfec [37] is adopted to implement the RS
codes. By default, we set the number of coded chunks K = 6
and R = 3. The coded chunks of M = 1, 000 data items are
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Fig. 5. Average data request latencies.

Fig. 6. 95th percentile tail latencies.

with the same size 1 MB [9]. They are uniformly distributed
at different buckets to achieve fault tolerance. As shown in
Table I, three frontend servers are built on personal computers
in different cities. The hardware features an Intel(R) Core(TM)
i7-7700 HQ processor and 16 GB memory. The cache capacity
of Memcached is set to 100 MB in RAM, i.e., the maximum
number of cached data chunks is set to C = 100. The data
service period T is set to 1 hour. Similar to the previous
studies [7], [12], the popularity of data requests follows a Zipf
distribution, which is common in many real-world data request
distributions. The tail index of the Zipf distribution is set
to 2.0 under the default settings, i.e., highly skewed.

Performance Baselines: For a fair performance compari-
son, four other schemes are adopted as performance baselines.

• Backend—All required K data chunks are directly
fetched from the remote buckets with no caching. This
scheme is adopted to quantify the benefits of caching.

• LRU and LFU—The Least Recently Used (LRU) and
Least Frequently Used (LFU) caching policies are used
to replace the contents in the caching layer with the
computation complexity of O(1) for data eviction [38].
For each selected data item, all K data chunks are cached.

• Agar [9]—A dynamic programming-based scheme is
designed to iteratively add data chunks with larger request
rates and higher data access latencies in the caching layer
with the computation complexity of O(CKM).

A. Experimental Results

To begin with, the performances of six schemes, i.e.,
Backend, LRU, LFU, Agar, and the proposed optimal and
online schemes, are compared under the default settings. As all
requested data chunks are fetched from the remote buckets,
Backend yields the highest average latency (746.27 ms, 726.43
ms, and 745.34 ms) and 95th percentile tail latencies (1,045.49
ms, 943.12 ms, and 1,159.16 ms) at three frontend servers.

LRU caches the recently requested data items by discarding
the least recently used data items. LFU caches the data items
with higher request rates. Compared with Backend, LRU
and LFU reduce the average latencies of all data requests
at three frontend servers by 24.6% and 23.2%, respectively.
As illustrated in Fig. 7, 24.7% and 23.3% of requests are

Fig. 7. Hit ratio of data chunk requests.

TABLE III

THE NUMBER OF CACHE PARTITIONS AND THE ART OF CACHING

SCHEMES WITH THE VARIATION OF CACHE CAPACITY

AND NUMBER OF CODED DATA CHUNKS

fulfilled by the cached data chunks with LRU and LFU. With
the whole data item cached, LRU and LFU reduce the access
latencies to 0 ms for 24.7% and 23.3% of data requests,
respectively. However, as the cache capacity is limited, the
remaining parts of the requests suffer from high access laten-
cies. Compared with Backend, the 95th percentile tail latencies
are only reduced by 3.5% and 3.9%, respectively. LFU and
LRU overlook the diversity of data chunk storage locations and
the heterogeneity of latencies across different storage nodes.
Caching the whole data item cannot achieve the lowest data
access latency.

Agar iteratively improves the existing caching configura-
tions by considering new data chunks. Each data item is
assigned a weight, given by the number of data chunks to
cache. Compared with LFU and LRU, more data items can
enjoy the benefits of caching. The average latencies at three
frontend servers are reduced to 504.21 ms, 503.42 ms, and
512.27 ms, respectively. Moreover, Agar prefers to evict low
valuation data chunks which incur high access latencies from
the caching layer. The 95th percentile tail latencies are reduced
to 912.24 ms, 877.02 ms, and 978.97 ms.

With an overall consideration of data request rates and
access latencies, the proposed optimal scheme optimizes the
number of cached data chunks for each data item, minimizing
the average latencies to 439.06 ms, 421.52 ms, and 479.79 ms.
Fig. 5 shows that the proposed online scheme approximates
the optimal scheme well with a similar latency of 450.95 ms,
431.66 ms, and 488.84 ms. As shown in Table III, although
raising the average latency by 2.3%, the online scheme greatly
reduces the computation overheads. Furthermore, the proposed
optimal and online schemes optimize the caching decisions
by selecting the data chunks with higher valuations. This
means the contents in the caching layers are with higher data
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Fig. 8. Impact of cache capacity.

TABLE IV

THE PERCENTAGE OF INCREASED DATA ACCESS LATENCY INCURRED BY

THE ONLINE SCHEME, I.E., PERFORMANCE LOSS, WHEN
COMPARED WITH THE OPTIMAL SCHEME

request rates and lower access latencies. The hit ratios of data
requests from three frontend servers are 25.8%, 25.7%, and
26.0%, respectively. The 95th percentile tail latencies with the
optimal scheme are reduced to 907.86 ms, 878.11 ms, and
955.65 ms. The online scheme incurs a similar 95th percentile
tail latencies of 916.45 ms, 883.0 ms, and 973.13 ms.

B. Impact of Other Factors

In this section, the impacts of cache capacity, number
of coded data chunks, number of data items, data popu-
larity, server failure, and seller pricing, are considered for
performance evaluation. For simplicity, the average latency
represents the average latency of all data requests from three
frontend servers in the following parts of the paper.

Cache Capacity: Fig. 8 illustrates the average latency when
the cache capacity C increases from 60 to 120 chunks. With no
data caching, the average latencies of Backend remain stable
at 739.35 ms. With more data requests benefit from caching,
the average latencies with all five caching schemes decrease.
With the increase of C, the proposed schemes have more
space for caching decision optimization. Compared with Agar,
the percentage of reduced latency via the proposed optimal
scheme improves from 3.1% to 16.0%. As shown in Table IV,
when compared with the optimal scheme, the online scheme
only increases the average latency from 1.3% to 2.4% with
the variation of cache capacity.

Then, the ART of five caching schemes is evaluated, which
determines the efficiency of deploying a caching solution.
As shown in Table III, by using simple heuristics, LRU
and LFU only need 0.05 ms to update the caching decision.
Agar periodically optimizes the caching configuration for all
data items in the storage system, which needs hundreds of
milliseconds for a round of optimization. With the increase of
cache capacity, the number of cache partitions |χ| increases
rapidly from 19,858 to 436,140. The ART of the optimal
scheme increases from 391.64 s to 23,746.93 s. In contrast, the
online scheme updates the caching decision upon the arrival of
each data request. According to our design in Algorithm 3, the

Fig. 9. Impact of number of coded data chunks.

Fig. 10. Impact of number of data items.

maximum number of cache partitions |χ̂| is determined by the
number of coded data chunks K . When a data request arrives,
the caching decision will not be updated if the data item is
already cached. Therefore, the ART of the online scheme for
each request decreases from 1.83 ms to 1.46 ms with the
increase of cache capacity. This means the online scheme is a
scalable solution for a large-scale storage system.

Number of Coded Data Chunks: The size of data items
is increased from 2 MB to 8 MB. With the same size of
coded chunks (1 MB), the number of coded data chunks
K increases from 2 to 8. As coded chunks are uniformly
distributed among remote buckets, more data chunks will be
placed at the buckets with higher access latencies with the
increase of K . Therefore, as shown in Fig. 9, with C = 100
and M = 1, 000, the average data access latency with Backend
increases from 596.06 ms to 762.83 ms. Moreover, when the
data item is coded into more data chunks, more requests are
served by fetching data chunks from the remote buckets.
The average latencies with all five caching schemes increase
accordingly. Fig. 9 shows that the proposed optimal and online
schemes always incur lower latencies than Agar, LRU, LFU,
and Backend. Compared with Agar, the percentage of reduced
latency via the online scheme varies from 29.9% to 3.4% with
the increase of K . Furthermore, Table III shows that the ART
of the online scheme only increases from 0.25 ms to 4.53 ms.
With the online scheme, few extra delays will be introduced
to handle the intensive data requests.

Number of Data Items: As shown in Fig. 10, with C = 100
and K = 6, the number of deployed data items M is increased
from 500 to 5,000. The average data access latency with
Backend remains basically the same. As the data popularity
follows Zipf distribution, a small portion of data items get
the majority of data requests. With the growing total number
of data items, the number of data items with relatively higher
request rates increases. Due to the limited cache capacity, more
and more data requests are served by fetching data chunks
from the remote servers. Therefore, the average latencies
increase rapidly with LRU (from 370.93 ms to 710.07 ms),
LFU (from 401.26 ms to 707.84 ms), Agar (from 464.45 ms
to 662.62 ms), and the optimal (from 272.66 ms to 651.48 ms)
and online (from 291.01 ms to 666.0 ms) schemes.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 16,2022 at 23:40:54 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: OPTIMAL CACHING FOR LOW LATENCY IN DISTRIBUTED CODED STORAGE SYSTEMS 1143

Fig. 11. CDF of data popularity.

Fig. 12. Impact of data popularity.

Data Popularity: Fig. 11 illustrates the CDF of the data
popularity using uniform and Zipf distributions. As shown in
Fig. 12, all six schemes incur similar data access latencies
when the data popularity follows a uniform distribution. When
all data items have the same popularity, the caching valuation
is only determined by the storage locations of the data items.
With a similar caching valuation for different data items, the
benefits of caching are not significant when the cache capacity
is limited. Then, with the increase of the tail index from 1.2
to 2.0, the skew of the data popularity becomes higher and
higher. A fraction of data items with higher request frequencies
can benefit more from caching. When the tail index is set
to 2.0, compared with Backend, LRU, LFU, and Agar, the
optimal scheme reduces the average latency by 39.6%, 21.3%,
19.9%, and 11.8%, respectively.

Furthermore, the online scheme can approximate the opti-
mal scheme well. With a uniform distribution of data pop-
ularity, the optimal scheme and the online scheme incur the
average data access latencies of 718.52 ms and 703.12 ms,
respectively. The performance loss is 15.4 ms. With a higher
skewness of data popularity, the greedy selection of cache
replacement candidates can approximate the optimal solution
better. With the tail index 2.0, the optimal scheme and the
online scheme incur the average data access latencies of
457.15 ms and 446.79 ms, respectively. The performance loss
is reduced to 10.36 ms. Table IV demonstrates that when
compared with the optimal scheme, the online scheme only
increases the average latency by about 2% under different
settings of data popularity.

Server Failure: Then, we evaluate the performance of the
proposed optimal and online schemes when server failure
happens. Please note that erasure codes can tolerate up to
R simultaneous server failures. Recent research indicated that
single server failure is responsible for 99.75% of all kinds
of server failures [39]. Therefore, single server failure is
considered in this paper by terminating each storage server in
turn. The experiment setting is identical to that in Sec. VI-A
except for the storage server failure. If the needed data chunks
are not available on the remote servers or cached in the

Fig. 13. Impact of server failure.

TABLE V

PERFORMANCE COMPARISON WITH DIFFERENT PRICING SCHEMES
WHEN APPLIED TO THE PROPOSED ONLINE CACHING SCHEME

caching layer, degraded read will be triggered to serve the
data requests. In this case, the data access latency contains
two parts, i.e., the network latency and the decoding latency.

Fig. 13 illustrates the average data access latencies with
various schemes. Without caching services, Backend incurs
the average network latency of 742.81 ms and the average
decoding latency of 18.82 ms. To begin with, we consider
the performance of caching parity chunks if the needed
data chunks are remotely unavailable under server failure.
Compared with Backend, LFU, LRU, Agar, and the proposed
optimal and online schemes reduce the average decoding
latencies by over 50%.

Then, let us consider the performance of caching the recov-
ered data chunks to avoid unnecessary decoding overheads of
the subsequent data requests. As shown in Fig. 13, compared
with caching parity chunks, the average decoding latencies
of five caching schemes can be reduced by about 11%.
Compared with Backend, LRU, LFU, and Agar, the optimal
scheme reduces the overall average data access latency by
40.4%, 20.5%, 19.7%, and 12.0%, respectively. Furthermore,
compared with the optimal scheme (with the average network
latency of 447.69 ms and decoding latency of 6.4 ms), the
online scheme (with the average network latency of 458.87 ms
and the decoding latency of 6.69 ms) incurs a performance loss
of 2.5% in the presence of server failure.

Seller Pricing: We compare the performance of the pro-
posed pricing method in (12) and the pricing method in [31]
when applied to the online caching scheme. The pricing
method in [31] has relatively low efficiency by raising the
price of the competed seller with only one unit in each round.
In fact, due to the prohibitively high computation overheads,
the pricing scheme in [31] cannot be applied to the offline
optimal scheme. In contrast, our proposed pricing method
ensures the competed seller will be assigned to only one
buyer in each round of pricing, which improves the solution
efficiency. As shown in Table V, our proposed pricing method
is about 300× faster than the classic pricing scheme.
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VII. CONCLUSION AND FUTURE WORK

In this paper, novel caching schemes were proposed to
achieve low latency in the distributed coded storage system.
To reduce the data access latency, frontend servers, each with
an in-memory caching layer, were deployed to cache coded
data chunks near end users. Experiments based on Amazon
S3 confirmed the positive correlation between the latency and
the physical distance of data retrieval over the WAN. As the
distributed storage system spans multiple geographical sites,
the average data access latency was used to quantify the
benefits of caching. With the assumption of future data pop-
ularity and network latency information, an optimal caching
scheme was proposed to obtain the lower bound of data access
latency. Guided by the optimal scheme, we further designed an
online caching scheme based on the measured data popularity
and network latencies in real time. Extensive experiments
demonstrated that the online scheme approximates the opti-
mal scheme well and significantly reduces the computation
complexity.

In future work, we plan to further reduce the computation
complexity of the online scheme incurred by |χ̂|, which
increases rapidly with the increased number of coded data
chunks K . Intuitively, we do not need to consider all cache
partitions in χ̂ to obtain near-optimal caching decisions.
We plan to analyze the structure of χ̂ and propose a sampling
scheme to select a subset of cache partitions that can contribute
to the lowest data access latency.
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