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Abstract—Caching has been considered as a promising solution
to achieve low latency in distributed erasure coded storage systems.
The previous research work categorizes all feasible caching deci-
sions into a set of cache partitions, and then obtains the optimal
solution by applying the market clearing price on each cache
partition. While enjoying the ultimate performance of low data
access latency, the optimal scheme suffers from high computation
overheads when applied to large-scale storage systems. This paper
presents SampleX, which constructs the sparsification of cache
partitions through sampling to approximate the optimal caching
scheme with substantially reduced computation complexity. Theo-
retical analysis guarantees the performance of SampleX. Further-
more, SampleX is implemented in a streaming fashion, capturing
the characteristics of recent traffic for online cache content replace-
ment. Trace-driven experimental results show that online SampleX
is up to 95× faster than the state-of-the-art online scheme while
only incurring a performance loss of 0.81%.

Index Terms—Caching, cloud-edge storage systems, erasure
codes, sampling.

I. INTRODUCTION

THE flourish of data-intensive applications, e.g., online
video streaming, Big Data analytics, and social network-

ing, has put significant burdens on the underlying storage sys-
tems. According to the prediction from International Data Cor-
poration, the global data will grow to 175 Zettabytes by the
coming year 2025 [1]. Modern distributed storage systems, e.g.,
Amazon Simple Storage Service (S3) [2], Google Cloud Stor-
age [3], and Microsoft Azure [4], often use erasure codes since
they provide space-optimal data redundancy for high reliability.

As one of the most widely used erasure codes, the (K,R)
Reed-Solomon (RS) code generates K data chunks and R parity
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chunks for each data item. Since RS codes are able to detect and
correct data errors of up toR chunks, theR-fault tolerance can be
achieved by placing chunks at different storage locations. Com-
pared with other data protection methods, e.g., data replication
with a minimum of 2× redundancy, erasure codes significantly
reduce storage costs while keeping the same or higher level
of reliability [5], [6]. In the considered geo-distributed storage
systems, erasure codes incur high data access latency as users
access multiple remote storage nodes for data reconstruction.

As supplements to the geo-distributed storage systems, major
content providers and distributors, e.g., Google and Akamai,
deploy edge servers between users and Wide Area Networks
(WANs) to achieve low latency [8], [9]. The edge servers have
cached a pool of frequently accessed data items to serve requests
from users. Although typically with limited cache capacity [13],
the edge servers can be flexibly deployed according to user
needs. Many existing works investigated caching policies at the
data item level to increase cache hit ratio [11], [14], [15], [16],
minimize service latency [12], or achieve load balancing [17],
[18]. Due to the limited cache capacity, caching entire data
items may not yield the lowest data access latency in distributed
coded storage systems [6], [7]. The network conditions from
some storage nodes may be better than others. Caching certain
data chunks of some popular data items can not only alleviate
the bottleneck of high data access latency but also tackle the
limitations of cache capacity [19], [20].

To the best of our knowledge, we were the first to investigate
the optimal scheme to determine which chunks should be cached
at the edge servers for low data access latency [21]. Through
iterative search, all feasible caching decisions are categorized
into a set of cache partitions χ based on the number of cached
chunks for each data item. The optimal caching decision can
be obtained by applying the market clearing price [22] on all
cache partitions, which, however, faces the challenges of high
computation overheads. Guided by the offline optimal scheme,
an online near-optimal scheme [21] is also designed to update
the caching decision upon the arrival of each request. As the
computation complexity (which is determined by the number
of cache partitions) grows exponentially with the increase of
K, the online near-optimal scheme works well when K is
relatively small. However, in real-world storage systems, e.g.,
Microsoft Pelican withK = 15 [23], the computation overheads
are considerably high. Experimental results in Section V-B
show that the edge server needs tens of milliseconds com-
putation delay to update the caching decision of each data
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request, which is the direct consequence of high computation
overheads.

To address the challenges, we propose to construct the spar-
sification of cache partitions through sampling on χ, reducing
the computation overheads while still preserving the ultimate
performance of caching on latency reduction. The main contri-
butions are summarized as follows:
� Instead of using exhaustive search over all cache partitions

for the optimal decisions, we investigate the performance of
different cache partitions and identify the “dense” structure
and rough periodicity of the incurred data access latencies,
which motivates the design of SampleX.

� We propose a simple but efficient SampleX scheme. Pre-
liminary experimental results demonstrate the efficacy of
SampleX. The optimal scheme can be well approximated
by just considering a small number of samples even with
millions of cache partitions in χ.

� Theoretical analysis provides the worst-case performance
guarantee of the proposed scheme SampleX.

� A prototype of the distributed coded storage system is built
based on Amazon S3. Driven by real-world data request
traces, experimental results show that SampleX is up to
95× faster than the online near-optimal scheme while
maintaining a similar low data access latency.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III presents the research back-
ground. Section IV presents the design of SampleX. Section V
evaluates the performance of SampleX based on experiments.
Section VI draws the conclusion and discusses future work.

II. RELATED WORK

Caching at the data item level: As a promising solution to
achieve low latency, caching design has received a significant
amount of research attention. Belady’s MIN [11] evicts the data
item with the furthest next request, which has been considered
as the standard offline optimal caching algorithm. However,
Belady’s MIN assumes perfect knowledge of future requests,
which is impractical. By considering the request recency and fre-
quency features, a group of research efforts focus on maximizing
cache hit ratios, with significant advances in recent work [14],
[15], [24], [25]. These schemes rely on heuristics to maintain
an ordering of the cached data items for eviction decisions.
Unlike previous studies that try to optimize heuristics-based
algorithms, Song et al. [16] proposed a learning-based scheme to
approximate Belady’s MIN with high efficiency. Atre et al. [12]
found that the hit-rate optimal Belady’s MIN may not be latency
optimal under the influence of high data access latency. The
minimum latency caching was constructed as a Minimum-Cost
Multi-Commodity Flow problem with an efficient heuristic
ranking algorithm as a solution. These previous studies focus
on caching at the data item level. If the data items are encoded
into multiple chunks with erasure codes, keeping a full copy of
data items may not enjoy the lowest data access latency.

Caching in coded storage systems: Ma et al. [26] proposed
an ensemble scheme of data replication and erasure codes to
reduce storage costs and data access latencies. Previous research

Fig. 1. Geo-distributed storage system with caching at the edge servers is
shown. End users send data requests to their nearest edge servers, which have
cached a pool of popular data chunks from remote storage nodes.

work [27] indicated that caching a partial number of chunks had
more scheduling flexibility. Assuming an oracle about the data
request rates, an analytical framework was proposed to optimize
the cache contents for low latency. In coded storage systems,
Al-Abbasi et al. [28] proposed a time-to-live cache scheme to
jointly reduce the mean and tail service latencies. EC-Cache [29]
uses online erasure coding to achieve load balanced and low
latency cluster caching. Agar [7] extends the application sce-
nario of erasure codes to geo-distributed storage systems. Agar
is a dynamic programming-based scheme which pre-computes
a cache configuration for a certain time with no worst-case
performance guarantees. Unlike Agar, [20] proposed an adaptive
content replacement scheme, which could achieve at least 50%
of the maximum reducible latency in theory. Our paper [21] is the
first work that explores the optimal caching solution to achieve
low latency in distributed coded storage systems. The proposed
SampleX is a novel extension to the optimal caching scheme [21]
based on sampling, reducing the computation overheads by
orders of magnitude while maintaining the performance of low
data access latency.

Random sampling: Sampling is a very versatile and powerful
tool for estimating vital properties of large-scale data sets by
maintaining random samples [30]. Dobra et al. [31] designed
a sharing scheme of query samples to improve the efficiency of
stream data processing. In geo-distributed storage systems, Yu
et al. [32] proposed a sampling-based scheme to simplify the
formulated hypergraph of data replica placement, reducing the
computation overheads. This paper applies sampling to achieve
near-optimal caching in distributed coded storage systems for
the first time. Unlike the previous random sampling schemes
which typically have no worst-case performance guarantees,
we analyze the structures of caching decisions and propose
SampleX with a theoretical guarantee.

III. BACKGROUND

A. Geo-Distributed Coded Storage System

We consider a geo-distributed storage system as in Fig. 1,
which contains a set of storage nodes N distributed at various
locations (with size N = |N |).1 Each storage node may rep-
resent a data center in the real world. The set of stored data

1Table I shows the major notations adopted in this paper.
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TABLE I
NOTATIONS

items is denoted byM (with size M = |M|). Using the same
settings as in Hadoop [34], all data items (e.g., file blocks) are
of the same block size. The (K,R) RS codes are adopted as the
storage scheme to achieve the targeted reliability with maximum
storage efficiency. With a generator matrix, RS codes divide each
data item into equal sized K data chunks and generate R parity
chunks. As shown in Fig. 1, the coded chunks are distributed
among storage nodes.2 We choose not to place the coded chunks
at a single storage node because it will increase the data access
latency of end users far away from the node [8].

The flow of data read is generalized as follows: when a data
item is requested, the read request is fulfilled by accessing
K data chunks from remote storage nodes, reconstructing the
needed data item with low overheads. If the data chunks are
provisionally unavailable, the needed data item can be recovered
via the decoding from any K out of K +R data and parity
chunks. The parity chunk retrieval for data recovery is defined as
degraded read, which inherently incurs a non-negligible compu-
tational [5]. Therefore, the degraded read will only be triggered
when the data chunks are provisionally unavailable from the
storage nodes. Furthermore, data write is not considered in this
paper.3

To serve geographically dispersed end users, caching at edge
servers is adopted for low data access latency. Each edge server
creates a Dynamic Random Access Memory (DRAM) caching
layer (with capacity C) to cache popular data chunks near end
users. At each edge server, a thread pool is adopted to access data
chunks in parallel. Without server failure, only data chunks will
be cached to avoid degraded read. As shown in Fig. 1, instead
of interacting with remote storage nodes directly, end users send
data requests to the nearest edge server. In geo-distributed coded
storage systems, previous studies demonstrate that caching all

2By default, data replication at the remote storage nodes is not considered to
ensure low storage overheads. Our design can be extended to the scenario of data
replication. If more copies of coded data chunks exist, the data request is served
by fetching K data chunks from the closest storage nodes. The performance of
replication is evaluated in Sec. V-C.

3The reason is that many storage systems, e.g., Content Delivery Networks
(CDN), are append-only where data items are immutable. Data items with any
updates are treated as disparate data items [5].

Fig. 2. Example of the distributed coded storage system with caching at the
edge server is shown. Each data item is coded into K = 3 data chunks. The
coded parity chunks are not shown as only data chunks are accessed unless data
chunks are temporarily unavailable due to storage node or network failure.

chunks for each data item may not yield the lowest data access
latency [7], [21]. This is mainly because in the caching services,
geographically distributed data chunks contribute differently to
the latency reduction. Due to the scarcity of DRAM resources at
the edge servers, not all M ·K data chunks can be cached in the
caching layer. To minimize the overall data access latency, the
caching scheme should determine which data chunks to cache
for each data item.

B. Problem Statement

Let rm denote the request popularity of data item m. Let Li

denote the average data access latency from storage node i to end
users,4 i ∈ N . Based on the storage location information of data
chunks, the latency of chunk retrieval {lm1

, . . ., lmK
} for data

item m can be obtained. Data chunks are re-labeled according
to the latency in descending order, i.e., lm1

≥ . . . ≥ lmK
. To

progressively reduce the latency, the data chunk with higher
access latency will always be cached first. Let us use data item
A in Fig. 2 as an example. Without caching, the access latency is
determined by the chunks placed at the farthest storage node, i.e.,
A1 andA2. WhenA1 andA2 are cached, the access latency is de-
termined by the farthest uncached chunk, i.e., A3. For each data
item, a (K + 1)-dimensional array τm = {τm,0, τm,1, . . ., τm,K}
is maintained

τm,k =

⎧⎨⎩
0, if k = 0,
rm · (lm1

− lmk+1
), if k ∈ {1, . . .,K − 1},

rm · lm1
, if k = K,

(1)
where τm,k represents the total reduced latency when k data
chunks are cached. As caching more data chunks for a data item
is always beneficial to latency reduction for that data item, we
have

τm,k−1 ≤ τm,k, k ∈ {1, . . .,K}. (2)

To maximize the total amount of reduced latency Θ, we need
to determine the number of cached data chunks for each data
item λm, λm ∈ {0, . . .,K}, m ∈M, i.e.,

max
λm∈N,m∈M

Θ(λm) =
∑

m∈M τm,λm

s.t. 0 ≤ λm ≤ K,∑
m∈M λm = C,

(3)

where
∑

m∈M λm = C ensures that the cache capacity is fully
utilized for latency reduction.

4The edge servers are deployed near end users. Compared with the high access
latency over WAN (in hundreds of milliseconds), the latency from the edge server
to end users is negligible.
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C. Overview of the Optimal Caching Scheme

Unlike traditional studies which typically use heuristics to
solve the integer caching problem for suboptimal solutions, [21]
designed a novel scheme based on cache partitions and market
clearing price to find the optimal caching decision for low
latency. The optimal scheme is an offline solution by assuming
the future network condition and data popularity information
are available. The fundamentals of the method are introduced as
follows:

1) Cache partitions: Let {x1, . . ., xK} ∈ χ denote a partition
of caching decisions, where xk represents the number of data
items with k data chunks cached. According to the constraints
in (3), {x1, . . ., xK} satisfies the Diophantine equations{

x1 + 2x2 + · · ·+K · xK = C,
x1 + x2 + · · ·+ xK ≤M.

(4)

The complete set of cache partitions χ can be derived via
iterative search. Initially, {x1, x2, . . ., xK} = {C, 0, . . ., 0} is a
feasible solution if C ≤M . Then, the values of {x2, . . ., xK}
are iteratively increased and x1 is set to C −

∑K
k=2 k · xk.

For example, let K = 3 and C = 4. Four cache partitions,
i.e., {4, 0, 0}, {2, 1, 0}, {0, 2, 0}, and {1, 0, 1}, are sequentially
appended to χ.5 Theoretical analysis shows that the set size
|χ| <

∏K
k=2(�Ck �+ 1) [21]. 2) Market clearing price for opti-

mal caching decision: For a cache partition {x1, . . ., xK}, we
should determine which data itemm ∈M should be assigned to
xk. For example, if m is assigned to xk, the caching decision is
λm ← k. The data items and cache partitions can be considered
as sellers and buyers, respectively. Based on the valuation array
in (1), each buyer has a valuation τm,k for each data item. To
maximize the reduced latency, cache partitions compete for data
items with higher valuations. A perfect matching between buyers
and sellers can be obtained by gradually increasing the price of
competed data item pm from 0. Then, the valuation is updated
with τm,k − pm. The introduction of price pm is known as the
market clearing price method, which yields the optimal decision
for each cache partition [22]. Theoretical analysis shows that
the computation complexity of market clearing price for a cache
partition isO(MPK), whereP is the “potential energy” driving
the pricing process.

P =

K∑
k=1

sum_top
m∈M

{τ(m, k), xk}, (5)

and function sum_top
m∈M

{τ(m, k), xk} represents the sum of

largest xk elements. The global optimal caching decision is
obtained by considering the perfect matching for all cache par-
titions in χ. The computation complexity of the optimal scheme
is no more than O(MPK ·

∏K
k=2(�Ck �+ 1)).

5The iterative search can also be applied to the scenario of C > M by
removing the derived cache partitions with x1 + x2 + · · ·+ xK > M in χ.
For example, if M = 3, {4, 0, 0} will be removed.

TABLE II
NUMBER OF CACHE PARTITIONS |χ| AND THE AVERAGE RUNNING TIME (ART)
OF THE OPTIMAL SCHEME WITH THE VARIATION OF CACHE CAPACITY C AND

NUMBER OF CODED DATA CHUNKS K

D. Drawback of the Optimal Caching Scheme

In theory, the optimal scheme achieves the lowest data access
latency. On the downside, however, it causes unacceptable com-
putation overheads when applied to a large-scale storage system.
According to the analysis in Section III-C, the computation
complexity of the optimal scheme is mainly determined by the
total number of cache partitions |χ|. Table II shows |χ| with
the variation of cache capacity C and number of data chunks
per data item K. Fixing K = 6, when C increases from 40 to
120 data chunks, |χ| increases rapidly from 3,692 to 436,140.
Fixing C = 100 data chunks, with the increase of K from 2
to 10, |χ| increases exponentially from 51 to 6,292,069. With
the increase of C and K, the Average Running Time (ART)
of the iterative search method for χ reaches up to hundreds of
seconds. Furthermore, with millions of required iterations |χ|,
the ART of the market clearing price method for a round of
optimization reaches up to tens of hours.6 The situation gets even
worse when the optimal scheme is applied to real-world storage
systems, e.g., Microsoft Pelican withK = 15with a larger cache
capacity [23]. The long ART implies that the optimal scheme
reacts slowly to real-time network changes.

IV. DESIGN OF SAMPLEX

In this section, we theoretically analyze the structure of cache
partitions and compare the performance of various sampling
schemes, which motivates the design of SampleX, an exten-
sion to the optimal caching scheme through sampling on set
χ to address the problem of high computation overheads. The
streaming-based implementation of SampleX captures the sta-
tistical characteristics of the recent request traffic, ensuring that
the caching problem can be solved in an online manner.

A. Theoretical Analysis of Cache Partitions

Intuitively, to obtain near-optimal caching decisions, we do
not need to consider all cache partitions in χ. In this way, the
computation complexity can be reduced with a decreased set
size. The key challenges are 1) which cache partitions should be
selected, and 2) how far is the latency reduction performance of
this selection from the optimal value? To solve these challenges,

6Please see Section V-A for details of the experimental setup.
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we explore the structure of the solution space χ with the follow-
ing theoretical analysis, which guides us to construct a subset χ̃
via sampling.

Definition 1: For any two cache partitions {x1, . . ., xK} and
{x′1, . . ., x′K} in χ, if ∃k ∈ {2, . . .,K}, xk−1 ≥ x′k−1, xk <
x′k, xk+1 ≤ x′k+1, . . ., xK ≤ x′K hold, it can be defined that
{x1, . . ., xK} is prior to {x′1, . . ., x′K} in the sequence of χ.

Considering the example in Section III-C with K = 3 and
C = 4, cache partition {2, 1, 0} is prior to {1, 0, 1}. Then, we
have the following Lemma.

Lemma 1: Let {x∗1, . . ., x∗K} denote the optimal cache par-
tition with the reduced latency in maximum Θ∗. For an arbi-
trary cache partition {x1, . . ., xK} with reduced latency Θ, if
{x1, . . ., xK} is prior to {x∗1, . . ., x∗K}, the approximation ratio
Θ∗

Θ could be positive infinity.
Proof: We prove the statement is correct by construction. Let

K = 3, C = 4, and M = 4. Fig. 2 shows an example of the
distributed coded storage system. The data storage locations,
the average data access latencies and the request popularities
are provided. The valuation arrays are⎧⎪⎪⎨⎪⎪⎩

τA = {0, 0, 1, 1 + σ},
τB = {0, 0, 0.9, 1},
τC = {0, 0, 0.9, 1},
τD = {0, 0, 0, 1}.

(6)

We assume σ is an arbitrarily large positive number. The
optimal caching partition {x∗1, . . ., x∗K} is {1, 0, 1} with Θ∗ =
1 + σ. For all cache partitions prior to {x∗1, . . ., x∗K}, i.e.,
{4, 0, 0}, {2, 1, 0}, and {0, 2, 0}, we have Θ equals 0, 1,
and 1.9, respectively. In this case, the approximation ratio is
Θ∗

Θ →∞.�
Let χ[−1] = {x[−1]

1 , . . ., x
[−1]
K } denote the last cache partition

in the sequence of χ with reduced latency Θ[−1].

x
[−1]
k =

⎧⎨⎩
�CK �, if k = K,
1, if k = C mod K,
0, otherwise.

(7)

The intuition of χ[−1] is to cache data items in their entirety
as many as possible.7 Lemma 1 shows that if χ[−1] is not
considered, the performance could be arbitrarily bad. Theorem 1
provides the worst-case performance bound of χ[−1].

Theorem 1: When only considering the last cache partition
χ[−1], the worst-case approximation ratio is Θ[−1]

Θ∗ > 1
K+1 .

Proof: For caching partition χ[−1], letM[−1]
1 denote the set

of data items where the number of cached chunks lies between
1 and K − 1. Let M[−1]

2 denote the set of data items with K
chunks cached, which are defined as{

M[−1]
1 = {m ∈M | εm ∈ {1, . . .,K − 1}},

M[−1]
2 = {m ∈M | εm = K},

(8)

where εm is the caching decision derived by the market
clearing price in [21]. Let Θ[−1]

1 and Θ
[−1]
2 denote the amount

7In large-scale storage systems, the cache capacityC is larger than the number
of coded data chunks K, i.e., C ≥ K.

Fig. 3. Illustration of caching decision sets.

of reduced latency for setM[−1]
1 andM[−1]

2 , respectively. Let
{x∗1, . . ., x∗K} denote the optimal cache partition with the re-
duced latency in maximum Θ∗. For {x∗1, . . ., x∗K}, M∗

1, M∗
2,

Θ∗1, and Θ∗2 can be defined in the same way. Fig. 3 shows an
illustration of caching decision sets.

1) We consider setsM∗
2 andM[−1]

2 first.
� For m∗,m ∈M[−1]

2 ∩M∗
2 (denoted by set 6© in Fig. 3),

τm∗,K = τm,K always holds with m∗ = m.
� If M∗

2 \M
[−1]
2 �= ∅ (denoted by set 7© in Fig. 3), for

∀m∗ ∈ 7©, ∀m ∈M[−1]
2 \M∗

2 (denoted by set 4© ∪ 5©
in Fig. 3), τm∗,K = τm,K also holds. This is because the
market clearing price outputs the optimal decision for
caching partition χ[−1]. If τm∗,K > τm,K , m ∈ 4© ∪ 5©
will be replaced by m∗ ∈ 7© for further latency reduction.
Similarly, the market clearing price also outputs the optimal
decision for {x∗1, . . ., x∗K}. If τm∗,K < τm,K ,m∗ ∈ 7©will
also be replaced by m ∈ 4© ∪ 5©. This indicates that for
∀m,m′ ∈ 4©∪ 5©, if τm,K �= τm′,K , we have set 7©= ∅.

The definition in (7) means that x∗K ≤ x
[−1]
K . With |M∗

2| ≤
|M[−1]

2 |, we have

Θ∗2 ≤ Θ
[−1]
2 . (9)

2) Then, we consider setsM∗
1 andM[−1]

2 .
� For ∀m∗ ∈ M∗

1 \M
[−1]
2 (denoted by set 2© ∪ 3© in

Fig. 3), ∀m ∈M[−1]
2 \M∗

1 (denoted by set 4© ∪ 6©
in Fig. 3), we have τm∗,εm∗ ≤ τm,K . This is because if
τm∗,εm∗ > τm,K , as 1 ≤ εm∗ ≤ K − 1,mwill be replaced
bym∗ for further latency reduction with the market clearing
price.

� According to (2), for ∀m∗,m ∈M∗
1 ∩M

[−1]
2 (denoted by

set 5© in Fig. 3), τm∗,εm∗ ≤ τm,K also holds withm = m∗.

Therefore, the value of Θ∗1/Θ
[−1]
2 is less than the ratio of the

numbers of cached data items

Θ∗1

Θ
[−1]
2

≤
∑K−1

k=1 x∗k

x
[−1]
K

. (10)

Then, we have the following two different cases:
1) x∗K ≥ 1: According to (4), we have

∑K−1
k=1 x∗k ≤ C −K.

According to (9) and (10), the approximation ratio is

Θ∗

Θ[−1] ≤
Θ∗2

Θ
[−1]
1 +Θ

[−1]
2

+
Θ∗1

Θ
[−1]
2

≤ 1 +
C −K

�CK �
< K + 1.

(11)
2) x∗K = 0: We have Θ∗2 = 0. Furthermore, according to (7),

the caching decision εm = C mod K, m ∈M[−1]
1 .
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Fig. 4. Experimental results show the average data access latencies of all caching partitions in χ under various settings.

Fig. 5. Experimental results show the approximation performance of sampling schemes under various settings.

Fig. 6. Another example of the distributed coded storage system with caching
at the edge server is shown. Compared with Fig. 2, the storage locations of data
items are changed but still K = 3.

� If ∃m∗ ∈ M∗
1 with the caching decision εm∗ > C mod K,

we have
∑K−1

k=1 x∗k < C − C mod K + 1. The approxi-
mation ratio is

Θ∗

Θ[−1] =
Θ∗1

Θ
[−1]
1 +Θ

[−1]
2

<
C − C mod K + 1

�CK �
< K + 1.

(12)
� If ∀m∗ ∈ M∗

1 with the caching decision 1 ≤ εm∗ ≤
C mod K, we have τm∗,εm∗ ≤ τm,εm , ∀m ∈M[−1]

1 ∪
M[−1]

2 . The approximation ratio is less than the ratio of
the numbers of cached data items

Θ∗

Θ[−1] =
Θ∗1

Θ
[−1]
1 +Θ

[−1]
2

≤ C

�CK �+ 1
< K. (13)

According to (11), (12), and (13), we can conclude that
Θ[−1]

Θ∗ > 1
K+1 . �

We use a simple example in Fig. 6 to demonstrate that the
approximation ratio is a fairly tight bound. Compared with Fig. 2,
we change the storage locations of data items. Furthermore, we
set the cache capacity C = 3. The valuation arrays are⎧⎪⎪⎨⎪⎪⎩

τA = {0, σ − 1, σ − 1, σ},
τB = {0, σ − 1, σ − 1, σ},
τC = {0, σ − 1, σ − 1, σ},
τD = {0, 0, 0, 0.1}.

(14)

As σ is an arbitrarily large positive number, the optimal
caching partition {x∗1, . . ., x∗K} is {3, 0, 0} with Θ∗ = 3σ − 3.

If only the last cache partition χ[−1] = {0, 0, 1} is considered,
we have Θ[−1] = σ. This means Θ[−1]

Θ∗ = σ
3σ−3 > 1

K > 1
K+1 as

K = 3. The approximation performance can be further im-
proved if more than one sample can be considered.

B. Performance Comparison of Sampling Schemes

Beyond the theoretical analysis above, we investigate the
structure of cache partitions and then compare the performance
of four sampling schemes through preliminary experiments.8

Fig. 4 illustrates the average data access latencies for all caching
partitions in χ under three different settings selected from
Table II. Based on experimental results, we have the following
two observations: 1) The average data access latencies of all
cache partitions show periodicity, although the patterns are
unstable and change under different settings. Due to the peri-
odicity, the variation interval of data access latencies incurred
by all cache partitions is bounded. A “dense” structure of cache
partitions can be observed in the real-world storage system. 2)
The optimal caching decision is influenced by the settings, i.e.,
cache capacityC, number of coded data chunksK, and valuation
array τm. Although the periodicity can be observed, it is hard
to use this information to directly obtain the optimal caching
decisions as the periodicity changes under different settings.
Therefore, we choose to achieve near-optimal performance via
sampling, with no need to consider all cache partitions. The
following four sampling schemes are used to construct the cache
partition subset χ̃.

Random sampling (RandS): Let S = |χ̃| denote the pre-
defined number of samples. We randomly selectS samples from
χ.

Cluster sampling (CluS): In this scheme, we utilize the
periodicity of caching partitions. First, we select a cluster by

8Please see Section V-A for details of the experimental setup. The storage
nodes are deployed over N = 6 Amazon Web Services (AWS) regions. The
edge server is deployed in Victoria, BC, Canada.
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randomly choose xK ∈ {0, . . ., �CK �}. Then, S samples are
randomly chosen from the selected cluster.

Probabilistic sampling (ProbS) [32]: Similar to CluS, we
utilize the periodicity by randomly choosing S samples from a
cluster. Fig. 5 shows that the cache partitions with lower data
access latencies are more likely to be in the front part of χ.
Different fromCluS, the clusterxK ∈ {0, . . ., �CK �} is choosen
according to the probability

pxK
=

(�CK �+ 1)− xK

1 + 2 + · · ·+ (�CK �+ 1)
, (15)

which means the cluster in the front part is assigned with a higher
selection probability.

Systematic sampling (SysS) [33]: It is a deterministic
scheme. The sequence of χ is divided into S equal-sized in-
tervals. The last cache partition in each interval will be selected.
For example, let |χ| = 100 and S = 4, the 25-th, 50-th, 75-th,
and 100-th cache partitions are added to set χ̃.

After the construction of cache partition subset χ̃, the market
clearing price method is adopted to calculate the amount of
reduced latencyΘ for all samples in χ̃. The caching decision λm

is obtained by selecting the caching partition with the highest
latency reduction, m ∈M.

Experimental results in Fig. 5 show the approximation per-
formance of data access latencies incurred by the four sampling
schemes. Surprisingly, RandS performs better than CluS and
ProbS. The main reason is that the periodicity is unstable
and may change under different settings. It is easy to select
a cluster with high data access latency. In contrast, RandS
takes better advantage of the “dense” structure for performance
approximation. Fig. 5 illustrates the average data access latency
of RandS over 100 rounds of execution and its 90% confidence
interval. As expected, more samples improve the approximation
performance but have diminishing returns. With S = 5 samples,
RandS yields the average data access latencies of 616.23 ms,
501.03 ms, and 580.41 ms for the three different settings, respec-
tively. When compared with the offline optimal scheme, RandS
only incurs a performance loss of 1.37%, 1.89%, and 2.02%,
respectively. Fig. 5 also shows that RandS performs better than
SysS.

C. Offline SampleX

Theoretical analysis and experimental results motivate the
design of SampleX.
� The last cache partition χ[−1] is added into set χ̃, ensuring

that the offline SampleX scheme has a worst-case perfor-
mance guarantee under any circumstances, e.g., the exam-
ple in Lemma 1. If S = 1, only χ[−1] will be considered.

� For the remaining cache partitions in set χ \ {χ[−1]}, we
rely on RandS to construct χ̃ as it only incurs a perfor-
mance loss of about 2%.

Although with good approximation performance, the main
drawback of RandS is also the long computation delay because
the iterative search for χ introduces non-negligible computa-
tion overheads. As the market clearing price method needs
O(MPK) steps to finish, the computation complexity of the

TABLE III
ART OF OFFLINE SAMPLING SCHEMES (MS) UNDER VARIOUS SETTINGS

Algorithm 1: Offline SampleX.
Input: Valuation array τ , number of samples S.
Output: Subset χ̃ and caching decision λm.
Initialization: ∀λm ← 0, χ̃← ∅.
1: Calculate the last cache partition χ[−1] based on (7)

and add it to set χ̃;
2: while |χ̃| < S do
3: C ′ ← C;
4: Randomly shuffle K = {2, . . .,K};
5: for k ∈ K do
6: Randomly set xk from {0, . . ., �C ′k �};
7: C ′ ← C ′ − xk · k;
8: end for
9: x1 = C ′;

10: Add {x1, . . .xK} to χ̃ if {x1, . . .xK} /∈ χ̃;
11: end while
12: for cache partition {x1, . . ., xK} ∈ χ̃ do
13: Invoke the market clearing price method in [21] to

obtain temporary caching decision λ̃m, m ∈M;
14: ∀λm ← λ̃m if

∑
m∈M τm,λm

<
∑

m∈M τm,˜λm
;

15: end for

market clearing price method is O(SMPK). With the set size
|χ| <

∏K
k=2(�Ck �+ 1), the computation complexity of RandS

is O(
∏K

k=2(�Ck �+ 1) + SMPK). So in the design of Sam-
pleX, we go one step further by implementing RandS with no
need to acquire the complete set of χ, which can further reduce
the computation overheads.

The pseudo code of SampleX is listed in Algorithm 1. The
random shuffling and value selection (Line 2–11) ensure that
each caching partition has the same probability to be selected in
χ̃with the computation complexity ofO(SK). The computation
complexity of SampleX is reduced to O(SMPK). As shown
in Table III, compared with RandS, SampleX can reduce the
computation overhead significantly without sacrificing the ap-
proximation performance. WithS = 5 samples, SampleX yields
the average data access latencies of 617.90 ms, 501.97 ms,
and 581.13 ms for the three different settings, respectively.
Compared with the offline optimal scheme, SampleX only incurs
a performance loss of 1.65%, 2.08%, and 2.11%, respectively.
As shown in Tables II and III for the three selected settings, the
ART is reduced by 715×, 26,453×, and 125,389×, respectively.
Results on other settings in Table II are not shown but are similar.

As shown in Table II, the offline optimal schemes may contain
millions of caching partitions. Then, we explain why SampleX
can approximate the optimal scheme well with only several
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Fig. 7. CDF of the average data access latencies for all cache partitions with
SampleX.

samples. Fig. 7 shows the Cumulative Distribution Function
(CDF) of the average data access latencies for all cache partitions
in set χ. If we randomly choose a sample from set χ \ {χ[−1]},
the probabilities p that the incurred data access latencies below
617.90 ms, 501.97 ms, and 581.13 ms (i.e., the average perfor-
mance of SampleX with S = 5) are 17.7%, 18.7% and 13.9%,
respectively. As offline SampleX selects the caching partition
with the highest latency reduction, the probabilities that the
incurred data access latencies below 617.90 ms, 501.97 ms, and
581.13 ms can be calculated by 1− (1− p)S−1, i.e., 54.2%,
56.3%, and 45.1%, respectively.

So far, our discussion is based on the assumption that future
data popularity and network condition information are known in
advance. The significance of offline SampleX is that it inspires
the design of an online scheme via sampling.

D. Online SampleX

Finally, we turn to the online setting, where we do not have
the knowledge of future data popularity and network condition
information. Fortunately, we can predict the future from the past.
Let T denote the data service period. With the streaming-based
implementation, the online SampleX captures the characteristics
of the recent traffic, updating the caching decisions upon the
arrival of each data request.

Data popularity: Exponentially Decayed Counter (EDC) [16]
approximately counts the number of requests for each data item,
which has been adopted to estimate future data popularity rtm in
real time, t ∈ T . Initially, rtm is set to 0. Then, Δm is updated
upon the arrival of each request for data item m, which denotes
the amount of time since m was last requested. Please note that
many successful heuristics applyΔ to update caching decisions,
such as least recently used (LRU) and its variants. Then, rtm is
updated as follows

rtm = 1 + rtm · 2−
Δm
2αr , (16)

where αr is a predefined discount factor to reduce the impact of
previous requests. In contrast with LRU which only cares about
the latest data request, EDC can accurately predict the decay
rate of data popularity over a longer period, which has been
widely applied in data block caching [16], [20], [35] and video
popularity estimation [36]. Another advantage is that EDC only
requires O(1) space to maintain the prediction information for
each data item.

Network condition: To identify the future trend of network la-
tency, Exponentially Weighted Moving Average (EWMA) [39]
is employed for analyzing the time series of data requests [37].

Then, Lt
i is updated after a data read operation from the edge

server to node i

Lt
i = αl · Lt

i + (1− αl) · ιi, (17)

where ιi is the measured end-to-end data access latency, and αl

is a predefined discount factor. Similar to EDC, EWMA also
needs O(1) space to maintain the prediction for each storage
node. To achieve low implementation overheads, we apply the
long-tested EDC and EWMA schemes to predict future data
popularity and network latency information. Recent research
advances in future information prediction, e.g., Least Hit Den-
sity (LHD) [15] and Hyperbolic [24], are also applicable to our
solution.

The online caching decision λt
m is updated in real time

according to the maintained data popularity rtm and network
latencies Lt

i, t ∈ T . The set of all data requests in period T is
denoted by Γ. When a data item m is requested, the valuation
array τm = {τm,0, τm,1, . . ., τm,K} is updated according to (16)
and (17) first. Then, the online scheme needs to determine 1)
whether m should be cached, and 2) which data items in the
caching layer are replaced. To ensure adaptivity, the challenge
is how to reduce the computation complexity of online caching
schemes while maintaining the performance of low data access
latency. An intuitive idea is to select a subset of replacement
candidates in the caching layer, without completely overriding
the existing decisions. For instance, Hyperbolic [24] and Learn-
ing Relaxed Belady (LRB) [16] obtain replacement candidates
through random selection, which may lead to arbitrarily bad
performance. In contrast, the online near-optimal scheme [21]
proposed a greedy scheme to generate the replacement candi-
dates, with which the worst-case performance guarantee can be
derived.

Online near-optimal scheme [21]: Let M̂′ denote the set of
cache replacement candidates. The data items with the lowest
valuations per unit (i.e., arg min

τn,λtn

λt
n

) in the caching layer are

successively added into M̂′. This is because the data items in
M̂′ are expected to be replaced first by the requestedm to reduce
the data access latency. Data item m is also added into M̂′. The
expansion of M̂′ needs K + 1 iterations at most (with |M̂′| ≤
K + 1) to ensure all K data chunks of m have a chance to
be cached. The iterative search algorithm calculates the cache
partition set χ̂ for M̂′. Based on subset M̂′ and χ̂, the market
clearing price method is invoked to update the caching decisions
λt
n, n ∈ M̂′. Theoretical analyses show that the approximation

ratio is 1− 2K−1
C . With |χ̂| < K!, the computation complexity

is less than O(K2PK!) in handling a data request.
Experimental results in [21] show that the online near-optimal

scheme performs well whenK is set to a relatively small number,
e.g., K = 6. When K is set to a larger number, e.g., K = 15 in
Microsoft Pelican, considerable computation overheads may be
encountered when updating caching decisions. Table IV shows
that the maximum number of required iterations |χ̂| in theory
increases quickly with the increase of K. Experimental results
in Section V-B also confirm our conclusion. With the increase
of K from 6 to 15, the ART of the online near-optimal scheme
increases rapidly from 2.21 ms to 27.41 ms to update the caching
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TABLE IV
MAXIMUM NUMBER OF REQUIRED ITERATIONS |χ̂| IN THEORY WITH

THE VARIATION OF K

Algorithm 2: Online SampleX.
Input: Valuation array τ and number of samples S.
Output: Online caching decision λt

m, m ∈M.
Initialization: ∀λt

m ← 0.
1: for data request γt

m ∈ Γ, t ∈ T do
2: Update {τm,0, τm,1, . . ., τm,K} based on (16)

and (17);
3: if

∑
n∈M λt

n ≤ C −K and λt
m < K then

4: λt
m ← K, add m to M̂;

5: else if
∑

n∈M λt
n > C −K and λt

m < K then
6: Invoke the online near-optimal scheme in [21]

to obtain data item subset M̂′;
7: Invoke Algorithm 1 to obtain samples χ̃ (let

χ̃ = χ̂ if |χ̂| < S) and online caching decision
λt
m;

8: end if
9: end for

decision for each data request. The long computation delay
indicates that high computation overhead is indeed encountered
with the online near-optimal scheme, especially when data items
are intensively requested. For example, the edge server needs to
handle tens of thousands of requests per second in CDN [16].
The high computation overheads may be unacceptable for the
resource limited edge servers.

Our observation in Section IV-C is that several samples are
enough to well approximate the optimal decision. Therefore,
we can also reduce the computation complexity of the online
near-optimal scheme through the proposed sampling scheme in
Algorithm 1. The pseudo code of the online SampleX scheme
is listed in Algorithm 2. With S samples, the computation
complexity of the online SampleX scheme is only O(K2PS)
in handling a data request. Please note that online SampleX
extends the online near-optimal scheme [21] (with approxima-
tion ratio 1− 2K−1

C ) through the proposed sampling scheme in
Algorithm 1. If only the last cache partition χ[−1] is considered,
the approximation ratio of is (1− 2K−1

C ) · 1
K+1 .

V. PERFORMANCE EVALUATION

In this section, a prototype of the distributed coded storage
system is built based on Amazon S3. Extensive experiments
are conducted by using Python to evaluate the performance of
SampleX.

A. Experimental Setup

The geo-distributed coded storage system contains N = 6
storage nodes, which are deployed over six Amazon Web Ser-
vices (AWS) regions, i.e., Tokyo, Ohio, Ireland, São Paulo,

Oregon, and Northern California. Each storage node creates
fifteen buckets, each of which represents a server for remote
data storage. The storage system is populated with M = 1, 000
data items [28], [40]. The zfec [41] library is used for the RS
codes implementation. The coded chunks of each data item are
of the same block size 1 MB [7], which are uniformly distributed
among six storage nodes to achieve load balancing.

To show the geographically dispersed feature of requests,
three edge servers are deployed on personal computers at various
locations, i.e., Victoria (V), Canada, San Francisco (SF), United
States, and Toronto (T), Canada. Each personal computer is
equipped with an Intel(R) Core(TM) i7-7700 HQ processor and
16 GB of memory. Memcached [38] module is used adopted
for data caching in DRAM. To request data chunks in parallel,
a thread pool is created on each edge server. The data services
last for an hour (T = 1).

MSR Cambridge Traces [42]: These are production traces
gathered from Microsoft Research, which have been extensively
adopted for the performance evaluation of caching schemes [12],
[15]. In this paper, these traces are used as the workloads of data
requests, but not the data sizes as they are not collected from
coded storage systems. All data items are assumed to be the
same size.

Besides the offline optimal scheme and the online near-
optimal scheme in [21], Agar [7] is also introduced as the
baseline for a fair performance comparison. Agar is a dynamic
programming-based caching scheme which iteratively caches
data chunks with larger request rates and higher data access
latencies. Agar can be considered as an offline scheme as it
optimizes the caching configuration for all data items in the
storage system.

B. Prototype Evaluation on Production Traces

Does the online SampleX approximate the offline optimal
scheme well? To answer this question, the average request
latencies provided by the five caching schemes are compared by
replaying the given traces. For simplicity, the average latency
represents that of all data requests from three edge servers in
the following. We set the cache capacity C = 100 data chunks
on three edge servers. The numbers of coded data and parity
chunks per data item are set to K = 6 and R = 3, respectively.
This case is considered as the offline optimal scheme is only
computationally feasible at a small scale (see Table II). With the
offline optimal scheme, the average request latency is 501.71 ms.

Through sampling on cache partitions, offline SampleX
achieves close-to-optimal performance. With the increase of
S from 1 to 20, the average request latency decreases from
562.52 ms to 507.12 ms. Furthermore, as shown in Fig. 8 and
Table V, offline SampleX (with S = 5) is about 2.6× faster
than Agar with smaller request latency. The main drawback of
offline schemes is that they require future request popularity of
all data items and network condition information, which may
not be practical in real-world storage systems. Therefore, we
mainly focus on online caching schemes in the following parts
of the paper. As shown in Fig. 8, compared with the offline
optimal scheme, the online near-optimal scheme only incurs a
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Fig. 8. Average data access latencies with C = 100 and K = 6.

TABLE V
ART OF OFFLINE SCHEMES AND THE ART OF ONLINE SCHEMES UPON THE

ARRIVAL OF EACH DATA REQUEST IN THE SCENARIO WITH C = 100,
K = 6 AND C = 1, 000, K = 15

performance loss of 2.13%. By applying sampling to the online
near-optimal scheme, the online SampleX scheme also achieves
close-to-optimal performance. With the increase of S from 1
to 20, the average request latency decreases from 573.67 ms to
512.47 ms.

With no need to completely override the existing caching
decisions, the average and the maximum number of required
iterations of the online near-optimal scheme |χ̂| are 5.62 and 32,
respectively. The ART is 2.21 ms upon the arrival of each data
request. Few extra delays will be introduced to handle intensive
data requests. As shown in Table V, the online SampleX scheme
can only slightly decrease the ART in the small-scale scenario
as online near-optimal is already very fast.

What are the overheads of using the online near-optimal and
online SampleX schemes? We then consider a more realistic
setting withC = 1, 000 data chunks andK = 15.9 As expected,
online SampleX achieves a similar performance to the online
near-optimal scheme. As can be seen in Fig. 9(a), the perfor-
mance loss is 1.72% when S = 5. Please note that due to the
nature of random sampling, online SampleX can have better
performance than the offline one in some scenarios.

In the current setting, the average and the maximum number
of required iterations of the online near-optimal scheme |χ̂| are
52.10 and 1,140, respectively. The ART increases to 27.41 ms.
Fig. 9(b) shows that as the number of required iterations is
bounded by S, considerable computation overheads can be
reduced by the proposed online SampleX scheme. As can be

9In the larger scale scenario, the offline optimal scheme is not included in the
comparison due to its prohibitively high computation overheads.

seen in Table V, the ART of online SampleX can be reduced
to 0.68 ms when S = 5. Please note that the ART of online
SampleX is 1.48 ms whenC = 100 andK = 6. This is because,
with the increase of cache capacity from 100 to 1,000, the cache
hit ratio increases from 20.88% to 67.27%. When a data request
arrives, the caching decision will not be updated if the data item
is already cached, i.e., nearly no overhead is introduced. This
means online SampleX is much more scalable for a large-scale
storage system than the online near-optimal.

More importantly, Fig. 9(c) shows that online SampleX can
reduce the tail latencies of scheme running time. The 99-th
and 99.99-th percentile tail latencies of the online near-optimal
scheme reach 549.88 ms and 1,119.56 ms, respectively. In con-
trast, whenS = 5, the 99-th and 99.99-th percentile tail latencies
of the online SampleX are reduced to 6.08 ms and 12.67 ms,
respectively. The online SampleX is much more efficient to
handle intensive requests without incurring much performance
loss even in the worst cases.

Beyond the data access latency and ART, Fig. 10 compares the
throughput with various caching schemes under two different
settings. Experimental results show that compared with Agar,
Online SampleX (S = 20) increases the throughput by 5.25%
with C = 100 and K = 6. Under the setting of C = 1, 000
and K = 15, the throughput of all caching schemes increases
as more requests can be served locally. Compared with Agar,
Online SampleX (S = 20) increases the throughput by 7.45%
in this case.

C. Impact of Factors

To fully evaluate the performance of various caching schemes,
the impacts of factors, i.e., cache capacity, number of coded
data chunks, number of data replicas, number of data items, and
server failure, are considered to fully evaluate the performances
of various caching schemes. By default, we set the cache capacity
C = 1, 000 data chunks. The number of data items is set to
M = 1, 000. Without considering data replication, the numbers
of coded data and parity chunks per data item are set to K =
15 and R = 3, respectively. With an overall consideration of
data access latencies and computation overheads, the number of
samples is set to S = 5.

Cache Capacity C: In this experiment, the cache capacity of
each edge server is increased from 800 to 4,000 chunks (i.e., with
cache capacity ranging from 800 MB to 4 GB at the resource-
limited edge server). With more data requests enjoying the bene-
fits of caching, the average data access latency decreases. Fig. 11
illustrates that the two online caching schemes achieve similar
performances under the variation of C. Compared with the
online near-optimal scheme, the performance loss incurred by
online SampleX ranges from 0.70% to 1.48%. With the increase
of cache capacity, the cache hit ratio of online SampleX increases
from 63.02% to 89.41%. With more requested data items already
in the caching layer, the caching decision will be less frequently
updated upon the arrival of requests. As shown in Table VI, the
ART of online SampleX decreases from 0.75 ms to 0.36 ms. For
the same reason, the ART of the online near-optimal scheme
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Fig. 9. Experimental evaluation with C = 1, 000 and K = 15.

Fig. 10. Throughput with various schemes.

Fig. 11. Impact of cache capacity.

Fig. 12. Impact of coded data chunks.

decreases from 31.78 ms to 8.31 ms. The online SampleX is at
least 23× faster than the online near-optimal scheme.

Number of Coded Data Chunks K: The size of data items is
increased from 9 MB to 18 MB. As the size of coded chunks
remains unchanged (1 MB), the number of coded data chunksK
changes from 9 to 18. The total number of data chunks increases
from 9,000 to 18,000. Fixing the cache capacityC = 1, 000 data
chunks, the cache hit ratio of online SampleX decreases from
78.24% to 63.85%. As shown in Fig. 12, the average data access
latency increases from 160.56 ms to 283.18 ms. Compared with
the online near-optimal scheme, the incurred performance loss
ranges from 0.81% to 1.84%. With the increase ofK, the average
number of required iterations of the online near-optimal scheme
|χ̂| increases from 15.58 to 125.17. The ART increases rapidly
from 2.61 ms to 68.24 ms. In contrast, with the number of
considered samples fixed at S = 5, the ART of online SampleX

TABLE VI
ART OF OFFLINE SCHEMES AND THE ART OF ONLINE SCHEMES UPON THE

ARRIVAL OF EACH DATA REQUEST UNDER VARIOUS SETTINGS

Fig. 13. Impact of data replicas.

increases slightly from 0.48 ms to 0.72 ms. The online SampleX
is up to 95× faster than the online near-optimal scheme.

Number of Data Replicas: With the consideration of repli-
cation, more copies of coded chunks will be placed at remote
buckets. Since the coded chunks are uniformly distributed,
more data chunks will be placed at the nodes close to end users
as the number of data replicas gets larger. Then, the faraway
storage nodes with high data access latency are no longer the
bottleneck. Fig. 13 shows that the average data access latency
of online SampleX is considerably reduced from 248.58 ms
to 86.56 ms. Compared with the online near-optimal scheme,
online SampleX is about 40× faster with a performance loss
ranging from 1.72% to 5.90%.
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Fig. 14. Impact of data items.

Fig. 15. Impact of server failure.

Number of Data Items M : As shown in Fig. 14, the number
of deployed data items M is increased from 800 to 5,000. With
the number of coded data chunks per data item K = 15, the
total number of data chunks increases from 12,000 to 75,000.
Due to the limited cache capacity C = 1, 000, more and more
data requests are served by fetching data chunks from remote
buckets. The cache hit ratio of online SampleX decreases
from 72.36% to 16.51%. Therefore, the average data access
latency increases from 211.01 ms to 640.34 ms. With the in-
crease of M , the caching decisions are more frequently updated
upon the arrival of data requests. The ART of online SampleX
increases from 0.46 ms to 1.87 ms. For the same reason, the
ART of the online near-optimal scheme increases from 19.73 ms
to 59.21 ms. Compared with the online near-optimal scheme,
online SampleX is over 30× faster with a performance loss
ranging from 1.72% to 4.57%.

Server Failure: The performance of caching schemes is eval-
uated when server failure happens. If the requested data chunk
mk is unavailable, the parity chunk mr with the lowest network
latency will be fetched from the remote bucket for data recon-
struction. Similar to [21], when the caching schemes suggest
that mr should be cached, the recovered data chunk mk (instead
of mr) is added into the caching layer to avoid the decoding
overheads of the subsequent data requests. Otherwise, if mk

is not cached, the degraded read is always triggered to serve
the data requests. In this case, the data access latency contains
two parts, i.e., the network latency and the decoding latency.
Furthermore, previous research work [43] indicated that single
server failure accounts for 99.75% of all kinds of server failures.
Although erasure codes can tolerate up toR simultaneous server
failures, this paper considers single server failure by terminating
each bucket in turn. Fig. 15 illustrates the maximal, minimal,
and average data access latencies with various caching schemes.
By caching the recovered data chunks, the decoding latency is an
order of magnitude lower than the network latency. Compared
with the online near-optimal scheme (with the ART of 28.19 ms),
online SampleX (with the ART of 0.73 ms) is about 39× faster
with a performance loss of 0.93% under server failure.

VI. CONCLUSION AND FUTURE WORK

Caching in distributed coded storage systems has drawn in-
creasing attention in recent years. The state-of-the-art caching
schemes achieve the lowest data access latency, but suffer
from high computation overheads when applied to a large-scale
storage system. This paper presents SampleX, a novel exten-
sion to the optimal schemes based on sampling, reducing the
computation overheads while maintaining the ultimate perfor-
mance of caching on latency reduction. The streaming-based
implementation of SampleX captures the characteristics of the
recent traffic, updating the caching decisions in a scalable and
online manner. Trace-driven experimental results demonstrate
the superior performance of SampleX in reducing data access
latencies and computation overheads.

In this paper, we consider the scenario where each edge server
separately provides caching services to its affiliated end users.
In future work, we plan to investigate the cooperative caching
problem among edge servers to further reduce the data access
latency.
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