
An Instance Reservation Framework for Cost
Effective Services in Geo-Distributed

Data Centers
Kaiyang Liu , Student Member, IEEE, Jun Peng ,Member, IEEE, Boyang Yu , Student Member, IEEE,

Weirong Liu ,Member, IEEE, Zhiwu Huang ,Member, IEEE, and Jianping Pan , Senior Member, IEEE

Abstract—Infrastructure-as-a-Service clouds in geo-distributed data centers offer various pricing options, including on-demand and

reserved instances, which provide an elastic and cost-effective infrastructure to support High Performance Computing (HPC)

applications. In this paper, we propose an instance reservation based cloud service framework, modeling the cost-minimizing

reservation decision issue as an NP-hard integer programming problem for distributed data centers. To ease its computation

complexity, two algorithms are proposed to minimize the HPC service cost with the worst-case performance guarantees: an offline

heuristic-greedy algorithm, and a rolling-horizon based online algorithm when only short-term demand prediction is available. Facing

fluctuating demands, instance reservation in a single data center may incur the highly underutilized capacity. To address this issue for

further cost reduction, we extend the scheme with a novel cloud broker federation based resource sharing mechanism, reallocating

already reserved but unused instances to computation-intensive and short-lived tasks for continuous execution without interruption.

Extensive evaluations driven by large-scale trace-based datasets demonstrate that the proposed mechanism can effectively handle

large volumes of service requests, saving considerable service costs with higher reservation resource utilization.

Index Terms—Geo-distributed data centers, high performance computing, instance reservation, resource sharing, cost minimization

Ç

1 INTRODUCTION

NOWADAYS cloud services have attracted people to
migrate ever-increasing resource-intensive High

Performance Computing (HPC) applications to geo-dis-
tributed data centers for high reliability, scalability and
cost saving benefits [1], [2]. As an infrastructure service,
Infrastructure-as-a-Service (IaaS) providers provision
resources in the form of Virtual Machines (VMs) based
on time-varying needs elastically. Multiple VMs are
organized as a cloud-based virtual cluster, realizing the
parallel services of HPC applications. Due to the high
demand on computation resources, HPC with big data
processing can incur big cost now. According to IDC
predictions, 71 percent of data center hardware expendi-
ture will be from the big data processing, which will hit
$203 billion in 2020 [3]. Therefore, it is imperative to pro-
vide cost-effective computing services in geo-distributed
data centers.

To attract different cloud users, most IaaS cloud service
providers offer various types of purchasing options,
referred to as the on-demand and reservation instances [4].
On-demand instance offers a flexible resource service based
on user demands, while it may incur higher financial cost
than reservations due to the relatively higher price. In con-
trast, reservation allows cloud users to prepay a price to
reserve instances for a certain long period (could be weeks,
months or years). Generally, reserved instances are often
cost-effective for the cloud user. Cloud providers, e.g., Ama-
zon EC2, Windows Azure and Rackspace, charge the reser-
vations with a significant discount to ensure the long-term
risk-free income. For example, the reservation can save the
cost up to 65 percent when reservations are fully utilized [5].
The cloud providers prefer steadier workloads for easier
resource provisioning [6]. In fact, HPC workload shows
fluctuating characteristics, and is driven by a lot of short-
lived tasks [7]. It is challenging to solve the instance reserva-
tion problem facing fluctuating demands.

Thus, utilizing the pricing gap between reserved and on-
demand plans, we proposed a cloud instance reservation-
based framework to realize the cost-effective HPC in geo-dis-
tributed data centers. Starting with the single data center sce-
nario, we build an integer programming optimization
framework to determine when and how many instances to
reserve in each data center. Unfortunately, such an instance
reservation problem is hard to be solved due to its non-con-
vex, nonlinear and NP-hard nature. Therefore, an efficient
approximation algorithm is proposed, which incurs less than
twice of the optimal cost given user demand information. An

� K. Liu is with the School of Information Science and Engineering, Central
South University, Changsha 410075, China and with the Department of
Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada.
E-mail: liukaiyang@csu.edu.cn.

� J. Peng, W. Liu, and Z. Huang are with the School of Information Science
and Engineering, Central South University, Changsha 410075, China.
E-mail: {pengj, frat, hzw}@csu.edu.cn.

� B. Yu and J. Pan are with the Department of Computer Science, University
of Victoria, Victoria, BC V8W 2Y2, Canada.
E-mail: {boyangyu, pan}@uvic.ca.

Manuscript received 20 Sept. 2017; revised 7 Feb. 2018; accepted 10 Mar.
2018. Date of publication 22 Mar. 2018; date of current version 7 Apr. 2021.
(Corresponding author: Jun Peng.)
Digital Object Identifier no. 10.1109/TSC.2018.2818121

356 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 2, MARCH/APRIL 2021

1939-1374 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0003-4655-3412
https://orcid.org/0000-0003-4655-3412
https://orcid.org/0000-0003-4655-3412
https://orcid.org/0000-0003-4655-3412
https://orcid.org/0000-0003-4655-3412
https://orcid.org/0000-0002-6207-9100
https://orcid.org/0000-0002-6207-9100
https://orcid.org/0000-0002-6207-9100
https://orcid.org/0000-0002-6207-9100
https://orcid.org/0000-0002-6207-9100
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
mailto:
mailto:
mailto:


effective rolling-horizon based online algorithm is also pro-
posed, which only relies on the short-term demand predic-
tion. Theoretical analysis indicates that the proposed online
algorithm is 3-competitive.

As the instance reservation over individual data center
may cause highly underutilized capacity, a novel broker
federation mechanism is investigated then to realize unused
capacity sharing among geo-distributed data centers. Fig. 1
illustrates the normalized request arrival rate per hour dur-
ing a day on average (in percentage) from three distributed
data centers [8]. Due to the time-zone differences, the work-
loads among geo-distributed data centers may not reach
their peaks and valleys at the same time [9]. The data cen-
ters authorize the broker federation reallocating already
reserved but unused instances to computation-intensive
and short-lived tasks for continuous execution without
interruption. The proposed task-aware instance sharing
algorithm makes the instance reservation service more com-
petitive in cost saving and resource utilization.

Furthermore, large-scale evaluations driven by real-
world HPC workloads [8] demonstrate that the proposed
instance reservation strategies among federated data centers
are highly efficient to handle large volumes of workloads,
reducing the total expenses by about 40 percent for cloud
users. Besides, the resource utilization can be improved
about 10 percent for distributed data centers.

The rest of the paper is organized as follows: Section 2
presents the system model. Section 3 formulates the
instance reservation problem in a single data center, and
proposes the heuristic-greedy approximation based offline
reservation algorithm, along with the rolling-horizon based
online reservation strategy. Section 4 investigates the broker
federation based real-time resource sharing in distributed
data centers. Section 5 presents evaluation results. Section 6
reviews the related work. Section 7 draws the conclusion
and lists the future work.

2 SYSTEM MODEL

In this section, we introduce the geo-distributed cloud ser-
vice system with the resource reservation strategy, the cloud
pricing scheme and the cloud-based virtual clusters for
HPC job execution. The major notations used in this paper
are summarized in Table 1.

2.1 Geo-Distributed Cloud Service Systems

As shown in Fig. 2, we consider a geo-distributed cloud ser-
vice system that consists of a set of data centers N distrib-
uted at different geographical locations (with size N ¼ jN j).
Each cloud data center owns a cloud controller module, a
demand monitor and a predictor, a cloud broker and sev-
eral resource-rich servers (e.g., computing servers and stor-
age servers). Computing servers provision cloud services in
the form of VMs according to HPC user requests. All data
files are stored in the storage servers. Inside a data center,
all these components are linked with high-speed switches
and LAN networks.

First, the demand monitor aggregates the request infor-
mation of HPC tasks in previous periods, such as usage sta-
tistics of CPU, memory and bandwidth. Using the
virtualization technology, the cloud controller schedules the
tasks of each user into VM instances for execution. To fulfill
the operation of resource-intensive HPC applications, multi-
ple VMs are organized as cloud-based virtual clusters for

Fig. 1. The normalized request arrival rate of each hour on average dur-
ing a day based on real-world HPC workload logs in three geo-distrib-
uted data centers (shifted for time zone difference), i.e., server UniLu
Gaia located in Luxemburg (GMT +1), LANL CM5 located at Los Alamos
(GMT �7) and SDSC-BLUE located at San Diego (GMT �8) [8].

TABLE 1
Notations

Symbol Definition

N The set of geo-distributed data centers
t Time slot, t ¼ f1; . . . ; Tg
pri , p

o
i Prices of reservation and on-demand plan

t Valid length of reservations
� Length of short-term demand prediction
HiðtÞ Short-term demand prediction, t ¼ f1; . . . ; �g
diðtÞ Demand estimations at time slot t
riðtÞ, uiðtÞ Reservation decision and available reservations

at time slot t
eiðtÞ, oiðtÞ Idle reserved instances and extra needed instances

at time slot t
k Submitted HPC tasks, k 2 Ki

F Data center federation
uk;j Number of reservations from data center j shared

by task k
’i Price of unit outgoing traffic from data center i
I iðtÞ Divided time slots each with length t,

t ¼ f1; . . . ; T � t þ 1g
niðtÞ Reservation priority of time slot I iðtÞ
Ci Total cost of users belong to data center i
CFi Total cost of users belong to data center i

with federation

Fig. 2. The geo-distributed cloud computing architecture.

LIU ET AL.: AN INSTANCE RESERVATION FRAMEWORK FOR COST EFFECTIVE SERVICES IN GEO-DISTRIBUTED DATA CENTERS 357

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 



the parallel execution. The system charges service fee in a
time-slotted fashion, for t ¼ 1; . . . ; T . Then by utilizing the
historical request information, the demand predictors make
predictions, i.e., the required number of instances in the
future periods, for each cloud provider.

To realize instance reservation in each data center, the
cloud brokermodule is adopted.We assume that all data cen-
ters and brokers belong to one IaaS cloud provider, which
facilitates the resource sharing without generating complex
trust issues. The case between different IaaS cloud providers
will be considered in our follow-on work. The broker module
is deployed upon a virtual infrastructure management archi-
tecture (e.g., the OpenNebula manager and its external-
resource lease manager Haizea [10]) to manage the life cycles
of VMs. Instead of trading directly with data centers, cloud
users can purchase instances from the broker. The broker
reserves a certain number of instances in advance to accom-
modate a major part of user requests. To ensure the SLA, on-
demand instances may be launched if reservations are not
enough to satisfy the burst demand.

The workload analysis indicates that HPC tasks show both
computation and data-intensive, long and short-lived charac-
teristics [8]. The broker federation aggregates the request and
reservation information of all distributed data centers, allow-
ing data centers to share unused capacities for the bursty
requests. If the computation-intensive and short-lived task
can be executed uninterruptedly in one data center, the over-
heads of live VMmigration to run a task can be avoided. Fur-
thermore, the service cost can be reduced, and the resource
utilization can be improved simultaneously. It is worth noting
that the proposed instance sharing model supports heteroge-
neous instance types. For example, Amazon EC2 can modify
the type of reserved instances according to the changing
demand during the service period [5]. Andwe can employ an
elementary resource measure as the building block for vari-
ous VM configurations, e.g., the Amazon EC2 compute
units [11]. Without loss of generality, we focus on a single
type of VM instance for simplicity in this paper.

2.2 Cloud Pricing Schemes

Pricing method plays a key role in the cloud marketplace.
For the reservation plan, users can pay a lower price pri to
reserve instances in data center i for certain time slots t, no
matter whether the instances are used or not. Reservation
pricing strategies may be different among cloud providers.
Some providers will give discounts when a large number of
instances are purchased, such as, Amazon EC2 [5]. But on
most occasions, the cost of reserved VMs is constant, for
example, the cloud services offered by GoGrid and Rack-
space. Furthermore, the cloud provider may offer various
reservation options with different unit reservation length t.
Taking Amazon EC2 as an example, the per hour cost of
reserved instances with a three-year contract is less than
that with a one-year contract [5]. For simplicity, this paper
will focus on fixed reservation costs with a constant t. This
assumption can be eased by dividing cloud users into differ-
ent groups according to the configuration of reservation
length t, and making reservation decisions for each group
of users individually. Before making the reservation deci-
sions, users in each group prefer to utilize already reserved
but unused instances from other groups to improve the

resource utilization, just as they leverage the on-demand
and reservation instances in this paper.

For the on-demand plan, users pay a relatively higher
price to launch extra VMs at the beginning of every time
slot dynamically. The on-demand plan allows cloud users
to pay a fixed price in each time slot without any perfor-
mance guarantees. For example, if the time slot is one hour,
the hourly price of an on-demand VM is poi . The fee of the
instance that has been launched for n hours is n � poi . Obvi-
ously, the cloud user can enjoy the cost-saving benefits only
when the expenses of unit reservation are cheaper than that
of the on-demand plan. We give Assumption 1 as follows:

Assumption 1. If we want to achieve cost saving through
instance reservation, the cloud pricing scheme must satisfy
pri=t � poi .

2.3 Cloud-Based HPC Job Execution

We illustrate the superiority of cloud-based model for HPC
task execution. As shown in Fig. 3a, the HPC tasks from
multiple users are depicted as rectangles, whose horizontal
and vertical sides represent the requested execution time
and computing resources, respectively. In the rectangle,

Fig. 3. An example of the cloud-based HPC task execution in distributed
data centers.

358 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 



every task is marked with its arrival time and requested exe-
cution time. The HPC task execution over traditional physi-
cal clusters with fixed computing capacity is illustrated in
Fig. 3b. With the batch scheduling mechanism, task C1, D1
and H2 are delayed because the computing resources are
not enough, which generates an average waiting time of
0.83 hours. While task C1, D1 and H2 are waiting, the com-
puting resources are not fully utilized. The average resource
utilization is only 53.6 percent. This means that the tradi-
tional batch scheduling based HPC task execution over
physical clusters may result in a waste of resources.

Then, we migrate HPC tasks into clouds for execution.
The cloud provider organizes the resources in the form of
VM instances, and multiple instances are organized as
cloud-based virtual clusters. Using the MapReduce frame-
work, the resource intensive HPC tasks are split into a num-
ber of smaller tasks, realizing the parallel task execution on
the virtual clusters. With HPC-oriented cloud execution in
individual data centers in Fig. 3c, each task can be allocated
with an appropriate number of instances upon arrival, lead-
ing to nearly no SLA violation. We assume that each data
center can make cloud resource reservations individually,
with T ¼ 6 h, t ¼ 6 h, po1 ¼ po2 ¼ $1 per hour, and pr1 ¼ $2:5
and pr2 ¼ $3 per 6 hours. For the maximum cost saving, the
optimal solutions are to reserve 4 and 3 instances in the two
data centers, respectively. The reserved resource utilization
is 76.2 percent.

In Fig. 3d, considering the characteristics of HPC tasks,
the resource sharing model in federated cloud data centers
is illustrated. The broker federation aggregates all submit-
ted jobs for scheduling. With the distributed computing
technologies across data centers [12], [13], [14], part of small
tasks belonging to E2 are scheduled into data center 1 by
the broker federation, with no live VM migration over-
heads. Similarly, the whole C1 and part of H2 are reallo-
cated to utilize unused reserved instances. The resource
utilization is increased to 91.7 percent. The HPC job execu-
tion with cloud resource sharing has considerable advan-
tages in saving cost and improving resource utilization.

3 INSTANCE RESERVATION IN A DATA CENTER

In this section, we investigate the instance reservation prob-
lem in a single data center without the resource sharing at
first. If the long-term request prediction is available, an off-
line heuristic-greedy algorithm is proposed to approximate

optimal solutions with competitive ratio 2� pr
i

t�po
i
. Further-

more, if only short-term demand estimations are available,
a rolling-horizon based online resource reservation strategy
is investigated with competitive ratio 3.

3.1 Instance Reservation Problem Formulation

We assume that each demand predictor module can esti-
mate the required number of VM instances diðtÞ for data
center i, i ¼ 1; . . . ; N . If long-term prediction is available,
the demand prediction covers all T time slots, then an off-
line reservation strategy is proposed to determine how
many instances riðtÞ to reserve at the beginning of each time
slot t, riðtÞ � 0, t ¼ 1; . . . ; T . All reserved instances riðtÞ will
remain effective from time t to tþ t � 1, which means the

valid period of reserved instances is t. At time t, the earliest
instances that still remain effective were reserved at time
t� t þ 1. Therefore, the number of total available reserva-
tions uiðtÞ at t is given by

uiðtÞ ¼
Xt

j¼t�tþ1
riðjÞ; (1)

where riðjÞ :¼ 0 for all j � 0. If uiðtÞ � diðtÞ, cloud user
demands can be satisfied by reservation instances only. On
the contrary, if uiðtÞ < diðtÞ, the reservation instances are
not enough to meet the demand diðtÞ, so the extra on-
demand instances oiðtÞ need to be launched

oiðtÞ ¼ ðdiðtÞ � uiðtÞÞþ: (2)

We define

ðxÞþ :¼ maxf0; xg: (3)

The total fee Ci that cloud users should pay to data center
i can be calculated as

Ci ¼
XT
t¼1

riðtÞ � pri þ oiðtÞ � poi ; (4)

where
PT

t¼1 riðtÞ � pri represents the total fee for the reserved

instances, and
PT

t¼1 oiðtÞ � poi represents the total fee of using
on-demand instances. Therefore, the critical problem is to
determine the number of reserved instances riðtÞ to mini-
mize the total service cost

min
riðtÞ2Zþ

Ci ¼
XT
t¼1

riðtÞ � pri þ oiðtÞ � poi
s:t: 8riðtÞ � max

t2½1;T �
diðtÞ;

(5)

where the constraint means that the number of reserved
instances should not exceed the maximum number of
demands for the cost and resource saving. The optimization
problem is an integer programming problem where optimi-
zation variables riðtÞ should be nonnegative integers.

3.2 Hardness Analysis

We rigorously examine the hardness of the formulated
problem in Eq. (5) by showing its non-convexity and nonlin-
earity, and then proving its NP-hardness.

Theorem 1. The formulated problem in Eq. (5) is a non-convex
nonlinear programming problem.

The proof is deferred to Appendix A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSC.2018.2818121. In general,

solving non-convex nonlinear programming problems is a
proven difficult problem. At a fundamental level, the diffi-
culty of globally solving non-convex nonlinear program-
ming lies in the fact that the multiple of its local optimal
solutions may not necessarily be global optimal solu-
tions [15]. Therefore, for the formulated problem, relaxing
the integer constraint riðtÞ 2 Zþ to continuous constraint
riðtÞ 2 Rþ, and then rounding the obtained results to the
nearest integers is not a simple or feasible solution.

LIU ET AL.: AN INSTANCE RESERVATION FRAMEWORK FOR COST EFFECTIVE SERVICES IN GEO-DISTRIBUTED DATA CENTERS 359

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TSC.2018.2818121
http://doi.ieeecomputersociety.org/10.1109/TSC.2018.2818121


Theorem 2. The formulated problem in Eq. (5) is NP-hard.

The proof is deferred to Appendix B, available in the
online supplemental material. Due to its NP-complete
nature, we cannot expect optimal and polynomial time solu-
tions for this integer programming problem. Meanwhile,
the non-convex optimization objective function makes this
problem inapplicable to general-purpose solutions for inte-
ger programming, e.g., the branch-and-bound method [15].
Furthermore, in real-world cloud systems, the schedulers
need to be fast and efficient. So for further complexity
reduction, a highly efficient heuristic-greedy algorithm is
proposed to address this issue.

3.3 Offline Solutions to Instance Reservation

To solve the integer programming problem above, if the
long-term request prediction is available, a highly efficient
heuristic-greedy reservation algorithm is proposed to obtain
offline solutions. If the request prediction is within a single
reservation period T � t, the proposed algorithm can reveal
optimal reservation decisions for each data center. If the
request prediction lasts for more than one reservation
period T > t, the heuristic-greedy algorithm overcomes
the prohibitive complexity of the integer programming, and
achieves close-to-optimal solutions with the worst-case per-
formance guarantee in the meantime.

3.3.1 The Optimal Heuristic Solution for T � t

As discussed above, the valid period of reserved instances
lasts for t time slots. If all demands are within a single reser-
vation period, i.e., T � t, it is rational to make all the reser-
vations at the beginning t ¼ 1, because the reservation
decision will remain valid over all time slots. Then we pres-
ent a heuristic solution for optimal reservation decisions in
the case T � t. To calculate the number of slots with
demands greater than 0, we start off by introducing variable
riðtÞ, which is defined as

ri tð Þ :¼
1; if di tð Þ � 1;

0; if di tð Þ ¼ 0:

�
(6)

Then variable ni is introduced to denote the number of
time slots whose demand is greater than 0, t 2 ½1; T �

ni :¼
XT
t¼1

riðtÞ; (7)

where ni determines whether service cost saving can be
achieved through reservation. The pri=p

o
i can be treated as the

heuristic factor for decisionmaking. Mathematically, for cost
saving, the cloud broker will reserve instances only if
ni � pri=p

o
i satisfies. Let s be the number of reservations in the

current step, which equals the minimum number of
demands greater than 0, i.e., s ¼ mint2½1;T �;diðtÞ> 0 diðtÞ. Then
we update the reservation decision with rið1Þ = rið1Þ þ s and

subtract satisfied demands with diðtÞ ¼ ðdiðtÞ � sÞþ. The

whole process is executed repeatedly until ni < pri=p
o
i . With

the derived reservation decision rið1Þ, the overall expendi-

ture of each cloud brokerCi can be calculatedwith Eq. (4).
It is easy to check that when T � t, Algorithm 1 degener-

ates into a heuristic solution which yields optimal decisions.

It is worth noting that Algorithm 1 is highly efficient that
only requires Qðmaxt2½1;T � diðtÞÞ execution time and QðT Þ
searching space.

Algorithm 1. The Heuristic-Greedy Reservation

Input: Demand prediction diðtÞ; t 2 ½1; T �.
Output: Reservation decision riðtÞ, t ¼ 1 if T � t, and

t 2 ½1; T � t þ 1� if T > t.
Initialization: riðtÞ  0; t 2 ½1; T � t þ 1�.
1: if T � t then
2: repeat
3: s  mint2½1;T �;diðtÞ> 0 diðtÞ;

" Get temporary decision
4: diðtÞ  ðdiðtÞ � sÞþ, t 2 ½1; T �;

" Update demands
5: rið1Þ  rið1Þ þ s; " Update reservations
6: until ni < pri=p

o
i

7: else if T > t then
8: repeat
9: t�  arg maxt2½1;T � niðtÞ; " Select interval I iðt�Þ
10: s  mint2I iðt�Þ;diðtÞ> 0 diðtÞ;

" Get temporary decision
11: diðtÞ  ðdiðtÞ � sÞþ, t 2 I iðt�Þ;

" Update demands in I iðt�Þ
12: riðt�Þ  riðt�Þ þ s; " Update reservations for t�

13: until niðtÞ < pri=p
o
i ; 8t 2 ½1; T �

14: end if
15: Calculate service cost Ci using Eq. (4).

3.3.2 The Heuristic-Greedy Approximation for T > t

When demands last for more than one reservation period,
i.e., T > t, we extend the above heuristic solution with the
greedy strategy. The heuristic-greedy reservation algorithm
is proposed for case T > t. To begin with, we divide the
whole service period f1; 2; . . . ; Tg into T � t þ 1 different
time slots I iðtÞ, each with length t

I i tð Þ :¼ ft; tþ 1; . . . ; tþ t � 1g: (8)

In each time slot I iðtÞ, we can apply the above optimal
heuristic solution in Section 3.3.1. Similar to Eq. (7), variable
niðtÞ is introduced to reflect the reservation priority of each
time slot I iðtÞ

niðtÞ :¼
Xtþt�1
j¼t

riðjÞ; t ¼ 1; . . . ; T � t þ 1: (9)

The larger the value of niðtÞ, the more the service cost can
be saved through reservation. At the same time, fewer
reserved instances will be wasted. Namely, the larger value
of niðtÞ, the higher reservation priority will be for time slot
I iðtÞ. Based on the prior knowledge, the heuristic-greedy
reservation is proposed as in Algorithm 1. Algorithm 1 sum-
marizes the process of the heuristic-greedy reservation
strategy for case T > t. Guided by the greedy method, the
time slot I iðt�Þwith high priority will be selected first

t� ¼ arg max
t2½1;T �

niðtÞ: (10)

Especially, time slots with the same priority will be
selected from the front to back along the time line. In the

360 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 



selected time slot I iðt�Þ, the proposed heuristic solution is
deployed for the reservation decisions in the current step,
i.e., s ¼ mint2I iðt�Þ;diðtÞ> 0 diðtÞ. Then we update the reserva-

tion decision at time t� with riðt�Þþ ¼ s, and subtract all sat-
isfied demands in I iðt�Þwith

diðtÞ ¼ ðdiðtÞ � sÞþ; t ¼ t�; t� þ 1; . . . ; t� þ t � 1: (11)

We repeat the greedy selection process until no
niðtÞ � pri=p

o
i exists for all time slots, whichmeans no cost sav-

ing can be achieved then. The following Theorem 3 bounds
the worst-case performance of the proposed heuristic-greedy
reservation algorithm.

Theorem 3. Under the circumstance of T > t, the proposed
heuristic-greedy reservation algorithm incurs no more than

2� pr
i

t�po
i
times of the optimal service cost.

Proof. We assume that the optimal reservation decisions are
already known. Then on the basis of the optimal reserva-
tion decisions, the whole demands can be divided into the
same number of fragments each with time length t. Let
r�i ðtÞ be one arbitrarily selected optimal reservation deci-
sion, and I iðtÞ is the fragment that the reservations remain
valid from time slot t to tþ t � 1. In fragment I iðtÞ, as dis-
cussed before, we can always find dpr=poe numbers of time
slots with demands exceeding r�i ðtÞ for cost-saving rea-
sons. If the number of time slots with demands exceeding
r�i ðtÞ is less than dpr=poe, the service cost can be further
reduced through launching more on-demand instances.
Let � represent the possible on-demand cost, � � 0. The
total optimal cost of fragment I iðtÞ is given by

C�i ðtÞ ¼ r�i ðtÞ � pr þ �: (12)

Then we investigate the performance of the heuristic-
greedy reservation algorithm to evaluate its worst-case
cost-saving performance. In fragment I iðtÞ, the proposed
algorithm can make the reservation in three different
types:

� The proposed algorithm makes only one reserva-
tion decision riðt0Þ, and t0 ¼ t. Therefore, reserva-
tion fragment I iðtÞ and I iðt0Þ are aligned so that the
heuristic-greedy reservation algorithm yields the
same reservation decision riðt0Þ ¼ r�i ðtÞ, and the
same service costCiðtÞ ¼ C�i ðtÞ.

� The proposed algorithm makes only one reserva-
tion decision riðt0Þ, while t0 6¼ t. Just as shown in
Fig. 4, fragment I iðtÞ must overlap with at least

one reservation fragment I iðt0Þ. The non-overlap-
ping part of requests will be served by on-
demand instances only.

� The proposed algorithm makes several reserva-
tion decisions which remain valid in fragment
I iðtÞ, so fragment I iðtÞ overlaps with several res-
ervation fragments.

When fragment I iðtÞ overlaps with only one fragment
I iðt0Þ and t0 6¼ t, the proposed algorithm yields the maxi-
mum service cost for fragment I iðtÞ. Because under the
circumstances, we have the largest number of demands
which are satisfied with on-demand instances. Just as
shown in Fig. 4, the heuristic-greedy reservation algo-
rithm yields the worst-case cost-saving performance.

Furthermore, we give the quantitative analysis of the
worst-case service cost. It is worth noting that
riðt0Þ � r�i ðtÞ must hold. It is easy to understand that if
riðt0Þ < r�i ðtÞ, additional reservations will be launched at
time slot t for further cost reduction. For the same reason,
the non-overlapping area in Fig. 4 has at most dpr=poe � 1
time slots with demand greater than 0. With all discus-
sions above, the worst-case service cost CiðtÞ of fragment
I iðtÞ incurred by the proposed algorithm is given by

CiðtÞ ¼ t � pr
po

� �
þ 1

� �
� riðt�Þ � pr

t
þ pr

po

� �
� 1

� �
� riðt�Þ � po þ �;

(13)

In Eq. (13), the first part means the reservation cost of
the overlapping area, the second part represents the on-
demand cost of the non-overlapping area, and the last
part � indicates the possible on-demand cost that the
optimal and the proposed heuristic-greedy reservation
algorithms both have. For fragment I iðtÞ, we can con-
clude that

CiðtÞ
C�

i
ðtÞ ¼

t � pr
po

l m
þ 1

� �
� riðt�Þ � prt � pr

po

l m
� 1

� �
� riðt�Þ � po þ �

riðt�Þ � pr þ �

¼ 1þ
pr
po

l m
� 1

� �
� riðt�Þ � po � pr

t

	 

riðt�Þ � pr þ �

< 1þ
pr � riðt�Þ � 1� pr

t�po

� �
riðt�Þ � pr þ �

� 2� pr
t � po :

(14)

For all fragments divided by the optimal reservation
decisions, condition (14) holds. Therefore, the proposed
heuristic-greedy reservation algorithm incurs less than
2� pr

t�po times of the optimal cost. The proof completes. tu
When T > t, Algorithm 1 is still highly efficient that

only requires OððT � t þ 1Þ �maxt2½1;T � diðtÞÞ execution time
and OðT Þ searching space.

3.4 Online Solutions to Instance Reservation

Due to the sporadic characteristic of HPC user demands,
many current cloud forecast models focus on the short-term
predictions. Let � be the time window length of the short-
term prediction, � < T . In order to fulfill the online

Fig. 4. The overlapping intervals when the proposed heuristic-greedy
reservation algorithm reveals the worst-case cost-saving performance.

LIU ET AL.: AN INSTANCE RESERVATION FRAMEWORK FOR COST EFFECTIVE SERVICES IN GEO-DISTRIBUTED DATA CENTERS 361

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 



reservation for all time slots T , we employ the rolling-hori-
zon strategy. At the beginning of time slot t, the demand
predictor in data center i makes a precise short-term fore-
cast in time windowHiðtÞ

Hi tð Þ :¼ ft; tþ 1; . . . ; tþ �� 1g: (15)

In each window HiðtÞ, if � � t, the heuristic solution in
Section 3.3.1 can be implemented for reservation decision
making. If � > t, the heuristic-greedy method in Section
3.3.2 is leveraged in the time window. Then we move to the
next time slot tþ 1, update the prediction information
Hiðtþ 1Þ, and repeat the process until t ¼ T � �þ 1. The
proposed Algorithm 2 can be treated as a greedy strategy
from the front to back along the time line. With the time
window moving forward, the proposed algorithm reserves
instances greedily until niðtÞ < pri=p

o
i ; 8t 2 Hi tð Þ. Due to the

fact that for cost saving, instances will be reserved only
when the reservation priority niðtÞ is no less than pri=p

o
i , the

proposed online algorithm remains valid for

dpri=poi e � � � T: (16)

Algorithm 2. The Rolling-Horizon Based Online
Reservation

Input: Short-term prediction diðtÞ, t 2 HiðtÞ.
Output: The online reservation decision riðtÞ, t ¼ ½1; T � t þ 1�.
Initialization: riðtÞ  0; t ¼ ½1; T � t þ 1�
1: for Time t ¼ 1 to T � �þ 1 do
2: Invoke Algorithm 1 for reservation decision riðtÞ in time

windowHiðtÞ;
3: diðtÞ  ðdiðtÞ � riðtÞÞþ; t 2 HiðtÞ;

" Update demands inHiðtÞ
4: end for
5: Calculate the service cost Ci using Eq. (4).

Compared with the offline Heuristic-Greedy reservation
with global information, the online algorithm with only
local information incurs a performance loss inHi tð Þ for deci-
sion making.

Theorem 4. Algorithm 2 incurs no more than 3 times of the opti-
mal service cost.

Proof.We assume that the optimal reservation decisions are
already known, and the optimal cost is defined as C�i .
Then we segments the demand period T into non-over-
lapping intervals fIkg, each with length t. We define

Ik :¼ ½ðk� 1Þt þ 1; kt�; k ¼ 1; 2; . . . : (17)

The heuristic solution can be utilized in intervals fIkg
for local optimal solutions. The total service cost of the
non-overlapping interval based method is defined as CI

i .
In [6], the authors proved that CI

i � 2C�i always holds.
Let friðtÞg be the reservation decisions of the pro-

posed online algorithm. We define a reservation interval-
aligned if instances are reserved at the very beginnings
of intervals fIkg. Meanwhile, we call the rest of other res-
ervations interval-overlapped. It is worth noting that a
reservation can overlap two intervals at most. Based on
the aligned and overlapped information, we segment
user demands into two different parts: interval-aligned

demands fdai ðtÞg, and interval-overlapped demands
fdoi ðtÞg. We have

diðtÞ ¼ dai ðtÞ þ doi ðtÞ; t ¼ 1; . . . ; T: (18)

As shown in Fig. 5, we give an example to illustrate
the segmentation method. With the reservation decisions
derived by the online instance reservation algorithm, the
demands served by interval-aligned reservations, e.g.,
rið1Þ, and possible on-demand instances are categorized
into interval-aligned demands. Only the demands served
by interval-overlapped reservations, e.g., rið3Þ, rið4Þ and
rið5Þ, are categorized into interval-overlapped demands.
As dai ðtÞ � diðtÞ for all t, the service cost of interval-
aligned demands Ca

i � CI
i always holds. Moreover, the

online algorithm reveals optimal reservation decisions
for interval-overlapped demands. The service cost of
interval-overlapped demands Co

i � C�i also holds. There-
fore, Ci ¼ Ca

i þ Co
i � 3C�i . The proof completes. tu

Note that the costs of fdai ðtÞg and fdoi ðtÞg will not reach
their maximum values simultaneously. So the 3-competi-
tiveness is only a loose bound. Evaluation results show that
competitive ratio of the online algorithm is about 2. Algo-
rithm 2 requires OððT � �þ 1Þ � � �maxt2½1;T �ðdiðtÞÞÞ execu-
tion time and Oð�Þ searching space.

4 TASK-AWARE INSTANCE SHARING IN

FEDERATED GEO-DISTRIBUTED DATA CENTERS

In this section, facing submitted HPC jobs, the cloud broker
federation is formed which aggregates all reserved but
unused instances, and schedules all tasks in a real-time
manner. For further service cost reduction and reservation
resource utilization improvement, the broker federation
allows all data centers to borrow spare capacity during
peaks for short-lived and computation-intensive jobs, and

Fig. 5. An example of the online instance reservation is shown, with
pr ¼ $0:75=hour, po ¼ $1=hour, t ¼ 6, � ¼ 6 and T ¼ 12. The reservation
decisions rið1Þ ¼ 2, rið3Þ ¼ 1, rið4Þ ¼ 1 and rið5Þ ¼ 1 are highlighted as
the colored areas. The segmentation of user demands is also shown.

362 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 



share unused capacities during valleys. With the proposed
instance reservation strategy for cloud data center i, the bro-
ker has eiðtÞ already reserved but unused reservations in
time slot t

eiðtÞ ¼ ðuiðtÞ � diðtÞÞþ; (19)

while the broker for other data center j may have ojðtÞ
resource shortage. To avoid resource wastage, all cloud
brokers form a stable federation to cooperate among geo-
distributed data centers. The cloud federation exchanges
the demand and reservation information of participating
data centers, aiming at satisfying all requests with reserved
instances as much as possible. This in turn reduces the ser-
vice cost and improves the resource utilization as well. We
define the cloud federation F as a set of cloud brokers
where the corresponding data centers have agreed to share
their unused capacities. Moreover, if all cloud brokers form
one federation, i.e., Fj j = Nj j, we call it the grand federation.

We define a tuple ðms
k;m

e
k; dk;vkÞ for the submitted HPC

task k, k 2 Ki, i 2 N , where ms
k and me

k mean the start and
end time, and dk means the required number of VM instan-
ces. In the distributed computing framework, e.g., Hadoop,
the Hadoop Distributed File System (HDFS) usually breaks
down very large files into data blocks with the same default
size, which facilitates the efficiency of parallel task process-
ing and reduces the traffic of data transfer [16]. So we let vk

represent the average used disk space per VM instance. As
the compression techniques might be utilized when migrat-
ing tasks, the disk space usage can be considered as the
upper bound of the traffic when migrating tasks.

As discussed above, the number of reserved instances is
uiðtÞ for data center i at time t. The submitted HPC tasks
preferentially utilize reserved instances in the local data
center. If the local reserved instances are not enough, we
may borrow spare capacity from other data centers. We
directly set the instance sharing price as pri=t, which means
the price of unused instances among data centers is equal to
the reservation price per time unit. With the simple but effi-
cient pricing scheme, no data center will maliciously com-
promise the cooperation by reserving needless instances for
sale. Note that other dynamic pricing models can also be
applied in our proposed instance sharing framework. Let
uk;j be the part of demands in dk that can be transferred to
data center j for the largest possible cost saving, which can
be calculated by the optimization problem as follows:

min
Xme

k

t¼ms
k

ððdk � uk;j � uiðtÞÞþ þ ðuk;j � ejðtÞÞþÞ

� poi þ ðejðtÞ; uk;jÞ� �
pri
t
þ uk;jvk’i

s:t: 0 � uk;j � dk; uk;j 2 Zþ;

(20)

where
Pme

k
t¼ms

k
ðdk � uk;j � uiðtÞÞþ � poi means the additional

cost of launching on-demand instances in the local data cen-

ter,
Pme

k
t¼ms

k
ðuk;j � ejðtÞÞþ � poi þ ðejðtÞ; uk;jÞ� � pri=t represents

the cost of using on-demand and unused instances in data

center j, and uk;jvk’i means the largest possible data trans-

fer cost.

We define ðx; yÞ� :¼ minðx; yÞ. As only one variable exists
in the optimization problem, optimal uk can easily be
obtained by exhaustive searching. It is worth noting that uk;j
will be 0 if no cost can be saved through instance sharing.
This ensures that only computational-intensive tasks will be
transferred due to the cost of data transfer. The data-inten-
sive tasks which require simple computation will be proc-
essed locally. Furthermore, as the reserved but unused
instances show fragmentation characteristics which are not
always available for all tasks, the short-lived tasks have
higher opportunity to be transferred. The total cost Qk;j

cloud user should pay for instance sharing is given by

Qk;j ¼
Xme

k

t¼ms
k

ðuk;j � ejðtÞÞþÞ � poi

þ ðejðtÞ; uk;jÞ� � pri=t þ uk;jvk’i;

(21)

which includes the cost cloud user should pay to j for using
idle reservations and on-demand instances, plus the expendi-
ture of data transfer. Similarly, the potential revenue of selling

the unused reservations for j is given by
Pme

k
t¼ms

k
ðejðtÞ;

uk;jÞ� � pri=t. Then we update the demand by dk ¼ dk � uk;j,

and repeat the process until all data centers are considered.
As part of demands in dk may be distributed to other data cen-

ters, the unused reservations in i should be updated with

eiðtÞ ¼ ðuiðtÞ � diðtÞ þ
P

j2N uk;jÞþ, ms
k � t � me

k. Further-

more, if the reserved capacity from other data centers is not

enough for uk, on-demand instances
Pme

k
t¼ms

k
ðdk � uiðtÞÞþ from

the local data center will be launched for the task. The real-

time task-aware instance sharing is given by Algorithm 3 as

shown above. It is worth noting that the algorithm runs for all

data centers in parallel. With the proposed mechanism, the
real-time resource sharing is achieved among distributed

data centers, without incurring the overheads of live VM

migration or the SLA violation to runHPC tasks.
The performance gain of Algorithm 3 is analyzed by the

following examples. We assume that Ci ¼
PT

t¼1 diðtÞ � poi ¼PT
t¼1 riðtÞ � pri is satisfied for 8i, which means all demands

are already satisfied with local reserved instances. There is
no need to transfer tasks among data centers. The perfor-
mance gain of Algorithm 3 is 0 in this case. Then we con-
sider another case that Ci ¼

PT
t¼1 diðtÞ � poi ¼

PT
t¼1 riðtÞ�

pri þ oiðtÞ � poi for 8i, which means no service cost reduction
can be achieved with the instance reservation in a single
data center. Then, with the instance sharing mechanism, for
the maximum cost saving, it is possible that all reserved
instances can be fully utilized, and no additional on-
demand instances are needed with task transfer. Therefore,
the performance gain of Algorithm 3 is in

0;
XN
i¼1

XT
t¼1

diðtÞ � poi � riðtÞ � pri
 !

: (22)

The computational complexity of Algorithm 3 in data
center i is given by Oðmaxk2Ki dk �N � Kikk Þ.

5 PERFORMANCE EVALUATION

In this section, we perform extensive evaluations driven by
large volumes of real-world HPC workload traces, i.e., the

LIU ET AL.: AN INSTANCE RESERVATION FRAMEWORK FOR COST EFFECTIVE SERVICES IN GEO-DISTRIBUTED DATA CENTERS 363

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 



Parallel Workloads Archive [8], to evaluate the performance
of the proposed resource reservation algorithms in feder-
ated cloud data centers. The accurate prediction of cloud
workload can be achieved as demonstrated in previous
studies [17], [18]. Hence, in this evaluation we simply adopt
the workload as the predicted request information.

Algorithm 3. Real-Time Task-Aware Instance Sharing

Input: Available reserved instances uiðtÞ, unused reservations
eiðtÞ at t, HPC task tuple ðms

k;m
e
k; dk;vkÞ, i 2 N , k 2 Ki, the

price of unit outgoing traffic ’i.

Output: Service cost CFi in the grand federation F , i 2 N .

Initialization: uk;j  0, CFi  
PT

t¼1 riðtÞ � pri ;
" Cost of reserved instances

1: for k ¼ 1 to Kikk do
2: dk  dk �minfdk;minms

k�t�me
k
uiðtÞg;

3: uiðtÞ  uiðtÞ �minfdk;minms
k�t�me

k
uiðtÞg, ms

k � t � me
k;

" Serve with local reservations
4: Sort data centers in ascending order based on the transfer

delay between the user and data centers;
5: for Data center j ¼ 1 to N , j 6¼ i do
6: if dk > 0 then
7: Get the demand uk;j that can be transferred to data

center j by Eq. (20);
8: dk  dk � uk;j; " Update demands

9: CFi  CFi þQk;j; " Cost of instance sharing

10: CFj  CFj �
Pme

k
t¼ms

k
ðejðtÞ; uk;jÞ� � pri=t;
" Revenue of instance sharing

11: ujðtÞ  ujðtÞ � uk;j, m
s
k � t � me

k;
" Update reservations in j

12: end if
13: end for
14: eiðtÞ  ðuiðtÞ � diðtÞ þ

P
j2N uk;jÞþ, ms

k � t � me
k;

" Update unused reservations
15: CFj  CFj þ

Pme
k

t¼ms
k
ðdk � uiðtÞÞþ;

" Cost of on-demand instances
16: end for

5.1 Datasets Description and Preprocessing

Data Sets. From the total available 36 real parallel work-
loads, three frequently used workload logs are selected for
performance evaluation. They are: 1) The UniLu-Gaia con-
taining 51,987 jobs. 2) The SDSC-BLUE containing 243,306
jobs. 3) The LANL-CM5 containing 122,060 jobs. For the
workload in each data center, we extract 600 hours to per-
form the evaluation (i.e., 25 days, T ¼ 600 h), and set the
time slot to 1 hour. During the extracted period, the total
numbers of needed instances are 671,360, 802,234 and

1,013,280 for the three data centers, respectively. For each
HPC task, the request information, e.g., the user ID, submit
time, requested number of processors and memory sizes
and actual runtime of jobs, can be obtained from the trace.
As shown in Fig. 6, the cumulative distribution function
(CDF) of the job runtime is illustrated. Note that tasks run-
ning for less than one hour count for more than 62.35, 89.10
and 82.10 percent of all HPC jobs for the selected three par-
allel workloads, respectively. These short-lived jobs have
higher opportunity to utilize idle reservations with the bro-
ker federation for uninterrupted execution.

For the reason of confidentiality, most publicly available
workloads, including the utilized Parallel Workloads
Archive, do not specify the detailed application for each sub-
mitted job. It is worth noting that the disk space usage of HPC
applications ranges from a few Megabytes to Gigabytes [19].
Without loss of generality, the average used disk space per
VM instance for each task is randomly generated following
the power-law distribution [20]. The total data sizes of tasks
range widely from 5 Megabytes to 65 Gigabytes, which can
reflect different characteristics of HPC tasks to some degree,
i.e., computation-intensive or data-intensive. The disk space
usage can be considered as the upper bound of the traffic.

Instance Scheduling. We employ Amazon EC2 Cluster
Compute Instances to evaluate the performance of proposed
instance reservation mechanism (by simulation). For simplic-
ity, we consider a uniform distribution of VM instances. Our
evaluation is based on the compute-optimized t2.small

instances, each instance with 1 processor and 2 GB memory.
Then we take the selected three parallel workloads as input,
scheduling all jobs into instances based on the required pro-
cessors andmemory sizes.We assumeHPC jobs can share the
sameVM in one time slot only if they belong to the same cloud
user for data security. The demand curves of the three data
centers are illustrated as in Fig. 7, indicating how many
instances are required byHPC jobs in each hour.

Pricing. The per hour prices of on-demand instances are
listed in Table 2, which are the same as Amazon EC2 small
instances. We assume each reservation is effective for 24
hours, t ¼ 24. The reservation prices pri are almost equal to
purchasing on-demand instances for half a reservation
period. If all demands are satisfied by reserved instances,

the maximum cost saving rate will be 1� pr
i

t�po
i
	 50%. In

addition, the prices of outgoing traffic for data transfer
among data centers are also listed in Table 2.

Performance Baselines. To verify the superiority of the pro-
posed offline heuristic-greedy reservation (HGR) algorithm,
the 2-Approximation Heuristic (2AH) algorithm proposed
in [6] is introduced for a fair comparison in service cost,
resource utilization and data transfer size aspects. The 2AH
algorithm segments the demand period into several non-
overlapping intervals. Each interval has the same length t

as the reservation period. Then the cloud broker makes res-
ervation decisions separately only at the very beginning of
each interval. The 2AH algorithm reveals local optimal
results for each interval, and incurs no more than twice of
the minimum overall cost.

Furthermore, to verify the performance of the proposed
rolling-horizon based online instance reservation (RHO)
algorithm, the online algorithm proposed in [6] that makes

Fig. 6. The CDF of the job runtime derived from the three data centers.

364 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 



reservation decisions based only on history is also intro-
duced. An instance will be reserved if the accumulated cost
incurred by the use of on-demand instances in the past res-
ervation period, i.e., from time t� t þ 1 to time t, is no less
than the cost of a reserved instance pri . The online algorithm
in [6] incurs at most 4 times of the minimum cost.

5.2 Performance of the Offline Resource
Reservation

Now we evaluate the performance of the proposed reserva-
tion strategies from three aspects: the cost saving, resource
utilization and data transfer size. In particular, when long-
term demand predictions are reliable, the offline HGR algo-
rithm is applied among geo-distributed data centers.

In Fig. 7, the real workloads from three distributed paral-
lel systems are depicted. With the reservation service by the
cloud broker, the 2AH algorithm and our proposed HGR
algorithm are adopted for reservation decision making. To
solve the NP-hard integer programming for all the three
data centers, the 2AH algorithm only needs 1 s to converge.
The proposed HGR algorithm needs a little bit longer time
about 2.5 s to converge and yields close-to-optimal

reservation decisions. The numbers of available reservations
achieved by two algorithms are also plotted in Fig. 7. In con-
trast, HGR is a more fine-grained strategy that can start to
reserve new instances at any time. As shown in Fig. 7, the
number of available reservations determined by the pro-
posed HGR algorithm tracks the trends of user demands
better. This means the proposed HGR strategy can provide
cheaper and more resource-efficient cloud services.

The detailed performance comparison of the algorithms
is given as in Figs. 8a and 8b. Without instance reservation,
the service costs are $55,745, $50,831, and $66,194, respec-
tively. The 2AH reservation strategy can bring cost saving
of 45.4, 25.1 and 26.3 percent with reserved resource utiliza-
tion 88.9, 81.3 and 74.5 percent. However, the coarse-
grained 2AH strategy ignores the variation tendency of user
demands and only makes reservation decisions at the begin-
nings of each time interval. Therefore, we can see that the
fine-grained HGR algorithm outperforms the 2AH strategy
in both service cost saving and resource utilization. It is
worth noting that the reservation benefits are different for
various data centers. The demand fluctuation degrees are
0.49, 0.66 and 0.78 for UniLu-Gaia, SDSC-BLUE and LANL-
CM5, respectively. The reservation prefers steady demand
patterns. When user requests are steady, they are largely
served by reserved instances. The steadier the user demand
patterns are, the more benefits the reservation can enjoy.

Facing widely fluctuating user demands in the three data
centers, the grand cloud federation is formed. The federa-
tion smooths out all service requests through coordination,
exploiting the benefits of reserved instances better. As
shown in Fig. 8, if we extend 2AH with the proposed broker
federation mechanism, the service cost can be reduced to
$27,388, $34,693 and $44,756, and the reserved resource uti-
lization is improved to 95.6, 87.7 and 81.1 percent, respec-
tively. Moreover, with HGR in federation, the service cost
can be further reduced to $27,240, $33,986 and $41,750, and
the reserved resource utilization is improved to 96.5, 88.5

Fig. 7. The demand curves of the three geo-distributed data center logs
are shown. The available numbers of reserved instances achieved by
the 2AH and proposed HGR algorithm are also depicted when the cloud
broker reserves instances individually for each data center.

TABLE 2
Prices of Geo-Distributed Clouds

Data Center UniLu LANL SDSC

On-demand instance ($/hour) 0.060 0.065 0.075

Reserved instance ($/day) 0.750 0.715 0.800

Outgoing traffic ($/GB) 0.020 0.010 0.015

Fig. 8. The performance of different reservation strategies in each
distributed data center.

LIU ET AL.: AN INSTANCE RESERVATION FRAMEWORK FOR COST EFFECTIVE SERVICES IN GEO-DISTRIBUTED DATA CENTERS 365

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 



and 82.9 percent, respectively. Furthermore, the total sizes
of transferred data among the three data centers can be seen
in Table 3. It is worth noting that the proposed HGR algo-
rithm can achieve a smaller data transfer size in total than
that of 2AH. Compared with HGR, the non-overlapping
interval based 2AH yields more fragmented demands that
need more on-demand instances along with more unused
reservations. Therefore, more data in total will be trans-
ferred with 2AH. The federation benefits are also different
for various data centers: LANL-CM5 enjoys the highest
benefit improvement, while UniLu-Gaia enjoys the lowest
improvement. This is because with a steady demand pat-
tern, most user requests are already satisfied by reserva-
tions, leading to less federation benefit improvement. In
general, considerable performance improvements can be
achieved with the proposed HGR algorithm.

As we cannot ensure the demand prediction is always
accurate, how the prediction error affects the performance
of HGR is quantitatively analyzed here. The accurate
demand prediction is given by diðtÞ. Denote " as the predic-
tion error upper bound. The real predicted demand in each
time slot is randomly generated in interval

½ð1� "ÞdiðtÞ; ð1þ "ÞdiðtÞ�:

As shown in Fig. 9, with the increase of prediction error
", the instance reservation may not accurately track the
trends of user demands. Therefore, the total service cost of
the three data centers increases, and the overall reserved
resource utilization decreases slightly. This also demon-
strates that the proposed algorithm is robust to the predic-
tion errors. Furthermore, with the increase of ", more tasks
may not be satisfied by local reservations. Meanwhile, more
reservations may be underutilized in a single data center.
So tasks have more chances to be transferred. For example,
for HGR, with " increasing from 0 to 40 percent, more cost
reduction can be achieved with instance sharing (from 7.1
to 8.2 percent). This means the instance reservation will be
more beneficial with instance sharing.

5.3 Performance of the Online Instance Reservation

As shown in Fig. 10, we evaluate the performance of the pro-
posed rolling-horizon-based online reservation (RHO) algo-
rithm with the variation of demand prediction length �. As
discussed in Section 3, for cost saving, instances will be
reserved only when the number of time slots whose demand
is greater than 0 in prediction window � is no less than the
ratio between on-demand and reservation price pri=p

o
i . As

shown in Fig. 10, when 1 � � � 10, only on-demand instances
are purchased. No reserved instances will be utilized. When
� ¼ 11, as dpr1=po1e ¼ dpr3=po3e ¼ 11, users from UniLu and
LANL begin to utilize reserved instances. Then when
� ¼ dpr2=po2e ¼ 13, all users from the three data centers can
enjoy the benefits of instance reservation.

When � ¼ 13, instances will be reserved only when the
predicted demands in all 13 time slots are above 0. Mean-
while, the reserved instances will be fully utilized at least for
the first 13 time slots. In this case, RHO tries to utilize fewer
reserved instances (93,891) with a higher resource utilization
(84.8 percent) to serve user requests. Thenwith the increase of
� from 13 to 23, it is unlikely that the reserved instances can
always be fully utilized from time slots t to tþ �� 1. In turn,

TABLE 3
Total Transferred Data Size (GB)

Data transfer path with 2AH with HGR

UniLu to SDSC 323.04 317.46

UniLu to LANL 280.72 367.02

SDSC to UniLu 397.17 149.89

SDSC to LANL 746.90 614.53

LANL to UniLu 415.94 220.08

LANL to SDSC 577.18 422.53

Fig. 9. The impact of the prediction error " on HGR.

Fig. 10. The performance of the proposed RHO algorithm.

366 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 



with a lower resource utilization, more instances should be
reserved to serve the user requests. This means that the cost
saving declines for every reserved instance. Therefore, with �
increases from 13 to 23, the service cost rises, and the resource
utilization declines, just as shown in Figs. 10a and 10b. When
� ¼ 23, the service cost and the total number of reservations
reach the maximum $155,890 and 193,717, respectively, with
utilization 52.6 percent. As shown in Fig. 10c,withmore avail-
able reservations in the federation, the transferred data size
increases at the beginning. Then with more demands have
already been satisfied with the local reservations, the trans-
ferred data size declines.

Furthermore, the valid length of reserved instances is
t ¼ 24. This means when � < 24, due to the lack of demand
information for all t time slots, we cannot ensure RHO
always makes appropriate reservation decisions. On the
contrary, when � ¼ 24, as discussed in Section 3, RHO
ensures the reservation decision is optimal with the largest
possible cost saving for the current t time slots. Therefore,
the service costs reduce dramatically when � increases from
23 to 24. Then, along with the further increase of �, more
time slots of demand predictions are achieved. Therefore,
RHO has more choices to make more appropriate reserva-
tion decisions from t to tþ �� t. Fewer reserved instances
are launched to accommodate more user requests from
� ¼ 24 (126,769) to � ¼ 600 (106,661). The service cost with
RHO declines, and the reserved resource utilization
increases gradually with the increase of � from 24 to 600.
While � ¼ 600, RHO degenerates to the proposed offline
HGR algorithm with the highest cost saving benefits.

Fig. 10a demonstrates that the competitive ratio of the pro-
posed RHO algorithm is about 2. With the global demand
information, HGR can approximate the optimal reservation

decision with the competitive ratio 2� pri
t�po

i
	 1:5. So the opti-

mal service costs are in $[68,653, 102,980]. When � ¼ 23,
RHO yields the maximum cost $155,890. It is easy to check
that the competitive ratio is about 2. Fig. 10 also demon-
strates that the federation service can always bring more ser-
vice cost reduction and resource utilization improvement.
As the online algorithm in [6] makes reservation decisions
based only on the history, we cannot ensure whether the
instance sharing is beneficial or not in the future. Therefore,
we do not extend the online algorithm in [6]with the instance
sharingmechanism.

In general, the prediction window length plays a key role
affecting the performance of online instance reservation.
When � ¼ 13, the total expense is $115,874 with reserved
resource utilization 84.8 percent, which is close to the results
in the proposed offline HGR algorithm where the cost and
resource utilization are $110,938 and 83.9 percent, respec-
tively. In fact, the shorter the length � is, the more accurate
the demand prediction can be achieved. According to the
observations in Fig. 10, we can make short-term predictions
to ensure considerable benefits of instance sharing.

The impact of the prediction error " on RHO is also quan-
titatively analyzed. Let us fix � ¼ 13. As listed in Table 4,
with the increase of " from 0 to 40 percent, the total service
cost increases slightly by about 3 percent, and the overall
reserved resource utilization decreases by about 2 percent.
The total size of data transfer traffic among data centers is
increased by 20.8 percent. This demonstrates that the pro-
posed RHO algorithm is also robust to the randomized pre-
diction errors.

6 RELATED WORK

6.1 HPC-Oriented Cloud Computing

Recently, HPC-oriented cloud computing has received
much attention from both academia and industry commu-
nities. For example, people explored the feasibility of HPC-
optimized clouds, such as Magellan [21], Amazon EC2
Cluster Compute [22] and Google Cloud Platform [23].
Wang et al. [12] designed G-Hadoop, a MapReduce frame-
work that aims to realize large scale distributed computing
across multiple data centers. The optimization of service
cost and resource utilization were considered as one of the
most important research topics in cloud-based HPC appli-
cation scheduling [13], [18], [24]. Garg et al. [13] proposed
several heuristic algorithms for HPC workload scheduling
in distributed cloud data centers. As a follow-up study,
Kessaci et al. [24] proposed a meta-heuristic approach to
solve the same problem. However, they mainly focus on
reducing the energy consumption of data centers to
increase the profit of cloud providers. From another point
of view, Niu et al. [18] investigated the reservation strategy
to build variable-size virtual clusters for cost-effective HPC
cloud resource provisioning. Inspired by previous studies,
for further service cost reduction and instance utilization
improvement, we establish a broker federation to realize
the reservation resource sharing for HPC jobs among geo-
distributed data centers.

6.2 Resource Sharing in Cloud Federation

Early approaches to cloud federation can be found in [25],
[26], [27], [28]. Buyya et al. [25] illustrated the vision, architec-
ture, and challenges in cloud federation environments. Celesti
et al. [26] described a cloud federation scenario where the
home cloud provider could rent resources from foreign
clouds if demands of home users are not satisfied. But the
incentives of the foreign clouds for helping are not specified
clearly. Along the same lines, Goiri et al. [27] investigated a
profit-driven cloud federation that allows a provider to
dynamically insource or outsource resources to other pro-
viders based on demand variations. Samaan et al. [11] pro-
posed a repeated game based capacity sharing mechanism in
a federation of hybrid cloud providers, with the objective of
maximizing the profitswhen the futureworkload fluctuations
are uncertain. From another perspective, Tang et al. [28]

TABLE 4
The Performance of RHO (� ¼ 13) with the Prediction Error "

LIU ET AL.: AN INSTANCE RESERVATION FRAMEWORK FOR COST EFFECTIVE SERVICES IN GEO-DISTRIBUTED DATA CENTERS 367

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 



considered the history resource allocation information, inves-
tigating the hierarchical resource sharing with long-term
fairness.

However, all these previous studies ignore the task char-
acteristics in the resource sharing, which decreases the
resource utilization. Zhang et al. [29] designed a novel
truthful online auction mechanism to support the heteroge-
neous user demands. Yi et al. [30] proposed a new pricing
framework, exploiting the task elasticity to achieve the fair-
ness, resource efficiency, and revenue maximization simul-
taneously. Hindman et al. [31] pointed out that short-lived
tasks allow diverse cluster computing frameworks for effi-
cient resource sharing. Liu et al. [32] considered the job size,
and leveraged the complementary features of job require-
ments on different resource types in the job packing for
resource sharing in clouds. Yi et al. [33] proposed a con-
tainer-based framework Cocoa to pack small and short jobs
into the proper group buying deals. Cocoa allows flexible
resource sharing among different users, achieving the cost
effectiveness for cloud users and the resource efficiency for
the provider. In this paper, dynamic instance reservation
strategies based on time varying user demands are pro-
posed. Unlike previous studies, we investigate the sharing
mechanism for reserved but unused instances. In fact, cloud
provider, i.e., Amazon EC2, has already laid down guide-
lines about reselling unused reservations when users have
owned the reserved instances after 30 days [34]. Unlike the
existing long-term reservation sharing, the fragmented
unused reservations during the service period are reused
for short-lived jobs to improve the resource utilization in
federated data centers.

6.3 Mathematical Programming Method

Through cloud federation, the capacity planning and cost
optimization can be addressed efficiently to provide
dependable cloud services. In this area, mathematical pro-
gramming methods have been adopted widely. For
instance, Chaisiri et al. [35] applied the stochastic program-
ming approach for resource provisioning offered by multi-
ple cloud providers. This algorithm can optimally make the
tradeoff between the reservation and on-demand plan with
uncertain demand and price. Wang et al. [6] formulated the
resource reservation as a dynamic programming problem,
using a set of recursive Bellman equations to achieve the
minimal expenditure, and developing several approxima-
tion algorithms to obtain near-optimal results. Khatua
et al. [36] formulated the resource reservation as an integer
programming problem, and proposed several heuristic-
based polynomial time algorithms to find the near optimal
solutions. Now few researches on resource management
have considered utilizing already reserved but unused
instances. The nonlinear integer programming has NP-hard
complexity in obtaining the solution, which restricts its
wide application. This paper proposes an efficient heuristic-
greedy algorithm to ease the complexity with the worst-
case performance guarantee.

7 CONCLUSION AND FUTURE WORK

In this paper, dynamic cloud instance reservation strategies
are investigated among federated clouds for the joint

optimization of HPC service cost and resource utilization.
We pursue a mathematical programming optimization
framework, and propose two highly efficient approximation
algorithms to determine when and how many instances to
reserve in each data center. Then by utilizing the comple-
mentary feature of HPC demand patterns among geo-dis-
tributed data centers, the cloud broker federation is formed
that can smooth out the demand curve through coordina-
tion. To exploit the benefits of federated resource sharing,
the broker federation reallocates the reserved but unused
instances to computation-intensive and short-lived jobs
from another data center for uninterrupted execution, with-
out incurring the overheads of live instance migration or
SLA violations. Finally, we evaluated the proposed schemes
through extensive performance evaluations.

In this paper, the grand formation of data center federa-
tion is adopted aiming at providing cost-effective cloud-
based HPC services. In the future work, for-profit data cen-
ter federation and competitive cloud providers will be stud-
ied for more flexible federation formation, exploiting the
benefits of cooperative instance reservation better.

ACKNOWLEDGMENTS

The authors would like to acknowledge that this work was
partially supported by the National Natural Science Foun-
dation of China (Grant Nos. 61772558, 61379111, 61672537
and 61672539), and in part by NSERC, CFI and BCKDF. The
work is extended from [37]. This new paper designs novel
algorithms with performance analysis, proofs, and evalua-
tion results.

REFERENCES

[1] G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid comput-
ing—Where HPCmeets grid and cloud computing,” Future Gener-
ation Comput. Syst., vol. 27, no. 5, pp. 440–453, 2011.

[2] A. G. Carlyle, S. L. Harrell, and P. M. Smith, “Cost-effective HPC:
The community or the cloud?” in Proc. IEEE 2nd Int. Conf. Cloud
Comput. Technol. Sci., 2010, pp. 169–176.

[3] Double-digit growth forecast for the worldwide big data and busi-
ness analytics market through 2020 led by banking and
manufacturing investments. 2016. [Online]. Available: http://
www.idc.com/getdoc.jsp?containerId=prUS41826116

[4] M. Mazzucco and M. Dumas, “Reserved or on-demand instances?
A revenue maximization model for cloud providers,” in Proc.
IEEE Int. Conf. Cloud Comput., 2011, pp. 428–435.

[5] Amazon EC2 Reserved Instances. 2018. [Online]. Available:
https://aws.amazon.com/ec2/pricing/reserved-instances/

[6] W. Wang, D. Niu, B. Liang, and B. Li, “Dynamic cloud instance
acquisition via IaaS cloud brokerage,” IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 6, pp. 1580–1593, Jun. 2015.

[7] M. Vouk, “Cloud computing issues, research and implementations,”
in Proc. Int. Conf. Inf. Technol. Interfaces, 2008, pp. 31–40.

[8] D. G. Feitelson, “Parallel workloads archive: Standard workload
format,” 2013. [Online]. Available: http://www.cs.huji.ac.il/
labs/parallel/workload/swf.html

[9] N. Laoutaris, G. Smaragdakis, P. Rodriguez, and R. Sundaram,
“Delay tolerant bulk data transfers on the Internet,” IEEE/ACM
Trans. Netw., vol. 21, no. 6, pp. 1852–1865, Dec. 2013.

[10] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE
Internet Comput., vol. 13, no. 5, pp. 14–22, Sep./Oct. 2009.

[11] N. Samaan, “A novel economic sharing model in a federation of
selfish cloud providers,” IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 1, pp. 12–21, Jan. 2014.

[12] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and
D. Chen, “G-Hadoop: MapReduce across distributed data centers
for data-intensive computing,” Future Generation Comput. Syst.,
vol. 29, no. 3, pp. 739–750, 2013.

368 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 

http://www.idc.com/getdoc.jsp?containerId=prUS41826116
http://www.idc.com/getdoc.jsp?containerId=prUS41826116
https://aws.amazon.com/ec2/pricing/reserved-instances/
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html


[13] S. Garg, C. Yeo, A. Anandasivam, and R. Buyya, “Environment-
conscious scheduling of HPC applications on distributed cloud-
oriented data centers,” J. Parallel Distrib. Comput., vol. 71, no. 6,
pp. 732–749, 2011.

[14] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data analy-
tics,” in Proc. ACM Conf. Special Interest Group Data Commun.,
2015, pp. 421–434.

[15] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA:
Athena Scientific, 1999.

[16] HDFS architecture guide. (2018). [Online]. Available: https://
hadoop.apache.org/

[17] J. Liu, H. Shen, and L. Chen, “CORP: Cooperative opportunistic
resource provisioning for short-lived jobs in cloud systems,” in
Proc. IEEE Int. Conf. Cluster Comput., 2016, pp. 90–99.

[18] S. Niu, J. Zhai, X. Ma, X. Tang, W. Chen, and W. Zheng, “Building
semi-elastic virtual clusters for cost-effective HPC cloud resource
provisioning,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 7,
pp. 1915–1928, Jul. 2016.

[19] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov,
“Characteristics of workloads used in high performance and tech-
nical computing,” in Proc. ACM Annu. Int. Conf. Supercomput.,
2007, pp. 73–82.

[20] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide
Web traffic: Evidence and possible causes,” IEEE/ACM Trans.
Netw., vol. 5, no. 6, pp 835–846, Dec. 1997.

[21] K. Yelick, S. Coghlan, B. Draney, and R. S. Canon, “The Magellan
report on cloud computing for science,” U.S. Department of
Energy Office of Science, Office of Advanced Scientific Computing
Research (ASCR), Washington, DC, USA, Dec. 2011.

[22] High Performance Computing (HPC) on AWS. (2018). [Online].
Available: http://aws.amazon.com/hpc-applications

[23] R. Prodan, M. Sperk, and S. Ostermann, “Evaluating high-perfor-
mance computing on Google app engine,” IEEE Softw., vol. 29,
no. 2, pp. 52–58, Mar./Apr. 2012.

[24] Y. Kessaci, N. Melab, and E. Talbi, “A Pareto-based metaheuristic
for scheduling HPC applications on a geographically distributed
cloud federation,” Cluster Comput., vol. 16, no. 3, pp. 451–468,
2012.

[25] R. Buyya, R. Ranjan, and R. Calheiros, “InterCloud: Utility-ori-
ented federation of cloud computing environments for scaling of
application services,” in Proc. Int. Conf. Algorithms Archit. Parallel
Process., 2010, pp. 13–31.

[26] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to enhance
cloud architectures to enable cross-federation,” in Proc. IEEE Int.
Conf. Cloud Comput., 2010, pp. 337–345.

[27] I. Goiri, J. Guitart, and J. Torres, “Characterizing cloud federation
for enhancing providers’ profit,” in Proc. IEEE Int. Conf. Cloud
Comput., 2010, pp. 123–130.

[28] S. Tang, B. S. Lee, and B. He, “Fair resource allocation for data-
intensive computing in the cloud,” IEEE Trans. Serv. Comput.,
vol. 11, no. 1, pp. 20–33, Jan./Feb. 2018.

[29] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu, “A
framework for truthful online auctions in cloud computing with
heterogeneous user demands,” IEEE Trans. Comput., vol. 65, no. 3,
pp. 805–818, Mar. 2016.

[30] X. Yi, F. Liu, Z. Li, and H. Jin, “Flexible instance: Meeting dead-
lines of delay tolerant jobs in the cloud with dynamic pricing,” in
Proc. IEEE Int. Conf. Distrib. Comput. Syst., 2016, pp. 415–424.

[31] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center,” in Proc. USENIX
Conf. Netw. Syst. Des. Implementation, 2011, pp. 295–308.

[32] J. Liu, H. Shen, and H. S. Narman, “CCRP: Customized coopera-
tive resource provisioning for high resource utilization in clouds,”
in Proc. IEEE Int. Conf. Big Data, 2016, pp. 243–252.

[33] X. Yi, F. Liu, D. Niu, H. Jin, and J. Lui, “Cocoa: Dynamic con-
tainer-based group buying strategies for cloud computing,” ACM
Trans. Model. Perform. Eval. Comput. Syst., vol. 2, no. 2, pp. 8–38,
2017.

[34] Selling in the Reserved Instance Marketplace. (2018). [Online].
Available: http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ri-market-selling-guide.html

[35] S. Chaisiri, L. Bu-Sung, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” IEEE Trans. Serv. Comput.,
vol. 5, no. 2, pp. 164–177, Apr.-Jun. 2012.

[36] S. Khatua, P. K. Sur, R. K. Das, and N. Mukherjee, “Heuristic-
based resource reservation strategies for public cloud,” IEEE
Trans. Cloud Comput., vol. 4, no. 4, pp. 392–401, Oct.–Dec. 2016.

[37] K. Liu, J. Peng, W. Liu, P. Yao, and Z. Huang, “Dynamic resource
reservation via broker federation in cloud service: A fine-grained
heuristic-based approach,” in Proc. IEEE Global Commun. Conf.,
2014, pp. 2338–2343.

Kaiyang Liu received the BS degree from the
School of Information Science and Engineering,
Central South University, in 2012. He is currently
working toward the PhD degree in the School of
Information Science and Engineering, Central
South University. His general research interests
cover the broad area of wireless communication
and computer networking, with special emphasis
on resource management and scheduling in
cloud computing systems. He is a student mem-
ber of the IEEE.

Jun Peng received the BS degree from Xiangtan
University, the MSc degree from the National Uni-
versity of Defense Technology, China, in 1987
and 1990, respectively, and the PhD degree from
Central South University, in 2005. She is a pro-
fessor in the School of Information Science and
Engineering, Central South of University, China.
From 2006 to 2007, she was with the School
of Electrical and Computer Science, University
of Central Florida, as a visiting scholar. Her
research interests include cooperative control,
cloud computing, and wireless communications.
She is a member of the IEEE.

Boyang Yu received the bachelor’s and master’s
degrees in computer science from Nankai Univer-
sity, China, in 2006 and 2009, respectively, and
the PhD degree from the Department of Com-
puter Science, University of Victoria, Canada, in
2016. His current research areas include net-
worked systems, distributed systems, and cloud
computing, with special focus on the analysis and
optimization in the data-intensive services. He is
a student member of the IEEE.

Weirong Liu received the BE degree in com-
puter software engineering, the ME degree in
computer application technology from Central
South University, Changsha, China, in 1998 and
2003, respectively, and the PhD degree in control
theory and control engineering from the Institute
of Automation, Chinese Academy of Sciences,
Beijing, China, in 2007. Since 2008, he has
been a faculty member with the School of Infor-
mation Science and Engineering, Central South
University, where he is currently an associate

professor. From 2016 to 2017, he was a visiting scholar with the
Department of Electrical and Computer Engineering, University of
Alberta, Edmonton, AB, Canada. His current research interests include
reinforcement learning, neural networks, wireless sensor networks, net-
work protocol, smart grid, and microgrid. He received the Best Paper
Award from the 7th Chinese Conference on Cloud Computing in 2016.
He is a member of the IEEE.

LIU ET AL.: AN INSTANCE RESERVATION FRAMEWORK FOR COST EFFECTIVE SERVICES IN GEO-DISTRIBUTED DATA CENTERS 369

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 

https://hadoop.apache.org/
https://hadoop.apache.org/
http://aws.amazon.com/hpc-applications
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ri-market-selling-guide.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ri-market-selling-guide.html


Zhiwu Huang received the BS degree in indus-
trial automation from Xiangtan University, in
1987, the MS degree in industrial automation
from the Department of Automatic Control, Uni-
versity of Science and Technology Beijing, in
1989, and the PhD degree in control theory and
control engineering from Central South Univer-
sity, in 2006. He is a professor with the School of
Information Science and Engineering, Central
South of University, China. From 2008 to 2009,
he was with the School of Computer Science and

Electronic Engineering, University of Essex, United Kingdom, as a visit-
ing scholar. His research interests include fault diagnostic technique and
cooperative control. He is a member of the IEEE.

Jianping Pan received the bachelor’s and PhD
degrees in computer science from Southeast Uni-
versity, Nanjing, Jiangsu, China. He is currently a
professor of computer science with the University
of Victoria, Victoria, British Columbia, Canada.
He did his postdoctoral research with the Univer-
sity of Waterloo, Waterloo, Ontario, Canada. He
also worked with Fujitsu Labs and NTT Labs. His
area of specialization is computer networks and
distributed systems, and his current research
interests include protocols for advanced network-

ing, performance analysis of networked systems, and applied network
security. He received the IEICE Best Paper Award in 2009, the Telecom-
munications Advancement Foundation’s Telesys Award in 2010, the
WCSP 2011 Best Paper Award, the IEEE Globecom 2011 Best Paper
Award, the JSPS Invitation Fellowship in 2012, the IEEE ICC 2013 Best
Paper Award, and the NSERC DAS Award in 2016, and has been serv-
ing on the technical program committees of major computer communica-
tions and networking conferences including IEEE INFOCOM, ICC,
Globecom, WCNC, and CCNC. He was the Ad Hoc and Sensor Net-
working Symposium co-chair of IEEE Globecom 2012 and an associate
editor of the IEEE Transactions on Vehicular Technology. He is a senior
member of the IEEE and ACM.

370 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 01,2021 at 22:54:08 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


