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Abstract—Heterogeneous deep learning clusters commonly host
a variety of distributed learning jobs. In such scenarios, the training
efficiency of learning models is negatively affected by the slow-
est worker. To accelerate the training process, multiple learning
jobs may compete for limited computational resources, posing
significant challenges to multi-job placement among heterogeneous
workers. This article presents a heterogeneity-aware scheduler to
solve the multi-job placement problem while taking into account
job sizing and load balancing, minimizing the average Job Com-
pletion Time (JCT) of deep learning jobs. A novel scheme based
on proportional training workload assignment, feasible solution
categorization, and matching markets is proposed with theoretical
guarantees. To further reduce the computational complexity for low
latency decision-making and improve scheduling fairness, we pro-
pose to construct the sparsification of feasible solution categories
through sampling, which has negligible performance loss in JCT.
We evaluate the performance of our design with real-world deep
neural network benchmarks on heterogeneous computing clusters.
Experimental results show that, compared to existing solutions,
the proposed sampling-based scheme can achieve 1) results within
2.04% of the optimal JCT with orders-of-magnitude improvements
in algorithm running time, and 2) high scheduling fairness among
learning jobs.

Index Terms—Distributed deep learning, job placement, job
sizing, load balancing, heterogeneity-aware scheduling, fairness.

I. INTRODUCTION

D EEP learning models, e.g., Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNN), and

Transformers, have brought breakthroughs to many areas, e.g.,
computer vision, speech recognition, and natural language pro-
cessing [1], [2], [3]. Training deep learning models requires
massive computing resources. People are building fast parallel
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computing clusters, often equipped with specialized accelerators
such as GPUs, TPUs, and FPGAs, to accelerate training jobs
at scale [4]. The deep learning clusters are usually shared by
multiple users to reduce operational costs and improve resource
utilization.

The hardware configurations of deep learning clusters are in-
trinsically heterogeneous with a wide variety of accelerators [4].
Due to different computational capacities, the model training
efficiency is negatively affected by stragglers, i.e., the workers
that run much slower than others [5]. Learning jobs prefer to
choose powerful workers to achieve higher training throughput.
Learning jobs may compete for computational resources. This
brings fundamental challenges to the design of multi-job place-
ment among heterogeneous workers.

Job Placement: Over the past years, many scheduling schemes
have been designed to optimize the training of learning jobs from
various perspectives, e.g., training throughput, Job Completion
Time (JCT), and fairness [4], [6], [7], [8], [9], [10], [11]. How-
ever, many previous schemes required the number of workers
engaged in training, i.e., job sizing, as prior information [4], [6],
limiting the performance to achieve the lowest JCT [12]. In addi-
tion, existing schemes also relied on prior workload assignment
information to calculate the reward of job placement [13]. In [6],
[7], [8], [9], the training dataset is divided into equal-sized parts
to feed the workers. In heterogeneous deep learning clusters, uni-
form workload assignment causes a mismatch between the loads
and the worker processing capabilities, incurring non-negligible
performance losses.

Load Balancing: One of the most effective strategies to
eliminate the negative effect of stragglers is to balance the
workloads of workers according to their training throughput,
which can be classified into static [14], [15] and dynamic [5],
[16], [17] strategies. The previous study assumes the set of
workers participating in training is known beforehand. It cannot
be directly applied to the multi-tenant scenario where learning
jobs are competing for the most capable workers.

The challenges of designing multi-job placement schemes are
as follows. First, a critical job sizing decision shall be made
when submitting learning jobs: how many workers should be
requested for each job to minimize JCT? Second, considering the
coupling between job placement and load balancing variables, a
naive approach is to optimize the load balancing sequentially
after the job placement decision has been found. However,
this approach is prone to be sub-optimal in the global config-
uration space (see the numerical example in Section IV-A).
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Another approach is to use an alternating optimization
technique [18], which involves optimizing one set of variables
while keeping the result of the other set constant. However,
the multi-round optimization introduces extra overhead and
delay.

At last, finding the optimal parallelization policy for deep
learning jobs can often be formulated as integer programming
problems [8], [18], [19], which are NP-hard and computationally
expensive to solve. The high computational complexity leads
to long solution times with the increasing scale of learning
systems. Furthermore, the parallelization policy often needs to
be recalculated periodically to keep up with dynamic system
changes, e.g., new job arrival, worker failure, etc. Therefore,
production systems frequently rely on heuristics that are easy to
calculate [8], [11]. However, previous research work indicates
that the heuristics are hard to maintain consistently good per-
formance as the problem scale and inputs change [20], and may
incur non-negligible performance loss (see Figs. 9 and 11 in
Section VI).

In this work, we propose a novel heterogeneity-aware schedul-
ing scheme tailored for multi-tenant, heterogeneous deep learn-
ing clusters. Considering the challenges above, our purpose is to
design schemes that run much faster than directly solving inte-
ger programming problems and can achieve consistently better
performance than existing heuristics. First, through the design
of proportional training workload assignment, the problem with
two types of job placement and load balancing variables can
be simplified into a problem with a single type of variable.
Then, for job sizing, all feasible solutions can be classified into
different categories Ψ based on the number of selected workers
for each job. By applying the matching markets method [21] to
all feasible solution categories in Ψ, the parallelization policy
can be obtained with theoretical guarantees. The computational
complexity of our design is mainly determined by the set
size |Ψ|. To reduce the computational complexity and improve
scheduling fairness, we further propose to construct the spar-
sification of feasible solution categories through sampling with
negligible performance loss. The main contributions of this work
include:
� We propose a novel scheme that leverages proportional

training workload assignment, feasible solution catego-
rization, and matching markets to achieve optimal training
throughput and near-optimal JCT.

� By exploring the features of feasible solution categories
in Ψ, a sampling-based scheme is proposed to reduce
the computational complexity and improve scheduling
fairness.

� Experimental results show that, when compared with the
optimal scheme, the proposed sampling-based scheme is
over 49× faster with only a 2.04% performance loss in
JCT.

The rest of this paper is organized as follows. Section II
summarizes the related work. Section III presents the system
model and the problem statement. Sections IV and V-B provide
the scheme design along with theoretical analysis. Section VI
evaluates the efficiency and performance of our design through

extensive experiments. Section VII concludes this paper and lists
future work.

II. RELATED WORK

A. Load Balancing

Load balancing schemes can be classified into static and
dynamic strategies. The static load balancing is oblivious to run-
ning time variations. For example, existing learning frameworks,
e.g., TensorFlow [22], Caffe [23], and MXNet [24], uniformly
assign workloads to all the workers. Some other static strategies
follow fixed assignment rules, e.g., Round-Robin [14] or with a
priori knowledge of the system status [15].

In response to the time-varying systems, dynamic strategies
adjust the workload distribution through continuous system
monitoring and state information collection. FlexRR [16] mea-
sures the instantaneous training throughput of workers at a
fine granularity. Once the straggler lags behind other workers
over a given threshold, certain workloads will be offloaded to a
faster worker. Similarly, Su et al. [17] proposed to increase the
workloads of workers that finish one iteration of training faster
while doing the opposite for those that are slower. Chen et al. [5]
proposed to redistribute workloads from heavily-loaded workers
to lightly-loaded ones, seeking to equalize the batch processing
latencies of all workers.

All load balancing schemes above optimize the individual
training of one learning job, which assume full worker partic-
ipation or that the set of selected workers is given as a priori
knowledge. Different from these studies, our goal is to balance
the workloads of multiple learning jobs when they are competing
for the most capable workers.

B. Job Placement

Deep learning training jobs bring new challenges to the sched-
ulers in computing clusters. For example, the state-of-the-art
schedulers in production systems, e.g., Apache YARN [25],
only perform non-preemptive scheduling of jobs as they arrive.
Consequently, users may experience long queuing delays.

For high training throughput or low JCT, a common and
effective solution is to use heuristic methods to determine the
job scheduling priority. Tiresias [6] designs the Least Attained
Service (LAS) algorithm to prioritize jobs. The job which has
received the least amount of temporal and dimensional resources
will be scheduled next. E-LAS [7] prioritizes jobs based on
the real-time epoch progress rate, i.e., the proportion of the
current training epoch over the total number of training epochs.
Compared with Tiresias, the average JCT is reduced with such
an improvement. Optimus [8] assumes that the remaining time
of a training job is predictable, and designs a greedy job place-
ment scheme to maximize the cluster-wide training throughput.
Saturn [12] uses a commercial solver for the joint optimization
of parallelism selection, job sizing, and schedule construction.
Beyond heuristics or using a solver, an alternative strategy is
to use machine learning techniques for job placement [9]. The
above research focuses on the homogeneous GPU cluster setting.
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TABLE I
NOTATIONS

The training dataset is divided into equal-sized parts to feed
the workers in cases of data parallelism. The impact of load
balancing on training efficiency for heterogeneous clusters is
overlooked, causing a non-negligible performance loss.

From another perspective, fair schedulers seek to guarantee
that each job can achieve better performance via resource sharing
in deep learning clusters. Themis [10] introduces a new metric
named finish-time fairness, which aims to assign more compu-
tational resources to the jobs whose received service is less than
the preplanned amount. Themis is designed for homogeneous
computing clusters with a single type of GPU. Gavel [4] is
a heterogeneity-aware scheduler for fairness. A round-based
policy is designed to improve scheduling flexibility and ensure
timely GPU resource reallocation. However, the scalability of
Gavel is limited as the mathematical solving procedure is highly
complicated and time-consuming. To achieve a higher solution
scalability in Gavel, POP [11] decomposes the original complex
optimization problem into multiple smaller ones and solves them
in parallel. This paper also focuses on solution scalability and
fairness via a sampling scheme in Section V-B.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we introduce the model of heterogeneous
computing clusters for distributed deep learning and then pro-
vide the problem formulation. To be specific, the widely used
Ring-AllReduce architecture with data parallelism is adopted
for distributed training. The major notations used in this paper
are summarized in Table I.

A. Heterogeneous Computing Clusters

As shown in Fig. 1, we consider a set of heterogeneous
computing clusters comprising multiple workers (denoted by
K = {1, . . .,K}), which carry out distributed training to learn
deep learning models. The well-known data-parallel training

Fig. 1. Framework of distributed deep learning with the Ring-AllReduce
architecture in heterogeneous computing clusters.

with the Ring-AllReduce architecture is adopted. As shown in
Fig. 1, distributed workers constitute a single ring to aggregate
the model gradients without using the central parameter server
(PS). Compared with the PS architecture, Ring-AllReduce is
more communication efficient as it eliminates the bottleneck in
the PS by distributing communication evenly over all participant
workers [26]. Many distributed learning frameworks adopt Ring-
AllReduce, e.g., NVIDIA Collective Communications Library
(NCCL) [27], Gloo [28], and Baidu-AllReduce [29].

The data collected from various sources is aggregated at
the workers for deep neural network training. The computing
clusters may need to handle several learning jobs simultaneously
with various learning goals. LetS = {1, . . ., S} denote the set of
active learning jobs. Each learning job is represented by a tuple
{Πi,Wi, Di}, whereΠi represents the entire training dataset for
job i, Wi represents the global parameters of the deep learning
model, Di represents the size of the global model parameters,
and i ∈ S . The size of gradients is the same as the model size
Di if gradient sparsification or quantization techniques are not
applied.

In the training process, each worker collects the training
dataset, keeps a local copy of the deep learning model, and sends
the calculated local gradient to the next worker. All workers are
connected through high-speed Ethernet to ensure the stability
and efficiency of communication. The hardware configurations
of workers may differ greatly. The training of learning models
shows heterogeneous performance behavior across various types
of workers due to architectural differences. In heterogeneous
computing clusters, how to select appropriate workers (or equiv-
alently job placement) and balance the loads to accelerate the
training of learning jobs is the main concern of this paper.

B. Distributed Deep Learning

Gradient descent and its variants are the most widely used
methods to train deep neural networks in an iterative man-
ner [26]. Let σi,k ∈ {0, 1} indicate whether worker k is chosen
for the distributed training job i or not, yielding 1 if true and 0 if
false. Letκi denote the set of selected workers for job i (with size
|κi| = Ki). As shown in Fig. 1, the training dataset is split among
selected workers (denoted by πi,k) with data parallelism. Using
allocated data, each worker trains its local model parameters.
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Every training epoch at each worker usually consists of three
steps:

1) The loss function fi,k(W
t
i ;πi,k) is calculated using the

feed-forward method;
2) The gradients ∇fi,k(W t

i ;πi,k) are calculated using the
backward propagation method;

3) After all workers finish the calculation of local gradients,
the model synchronization begins. Each worker divides its own
local gradients into Ki sub-arrays, which are referred to as
“chunks”. The worker k sends its kth chunk to the next worker,
while it receives the (k − 1)th chunk from the previous worker
simultaneously. Then, worker k performs the reduction opera-
tion to the received (k − 1)th chunk and its own (k − 1)th chunk,
and sends the reduced chunk to the next worker. By repeating the
receive-reduce-send steps Ki − 1 times, each worker obtains a
complete reduction of global gradients. The global model can
be updated as follows

W t+1
i = W t

i − η · 1

Ki
·
∑
k∈κi

∇fi,k(W t
i ;πi,k), i ∈ S, (1)

where η is the learning rate. The training in (1) is also known
as Bulk Synchronous Parallel (BSP) [30], which synchronizes
all updates after each worker goes through its shard of data.
Please note that Ring-AllReduce is not suitable for asynchronous
communication, e.g., Stale Synchronous Parallel (SSP) [31] and
Asynchronous Parallel (ASP) [32] because of the collective
communication fashion [26].

Computation Latency and Training Throughput: If learning
job i is placed at worker k, the computation latency of one
training epoch is

l
[p]
i,k =

|πi,k|
ρi,k

, (2)

where ρi,k denotes the number of processed data samples per
second at worker k. Typically, the computations of training are
tensor-based, which are highly structured with hundreds of thou-
sands of short iterations. In each iteration, samples are packed
into a matrix for fast processing. Fig. 2 shows the average com-
putation latency of various learning jobs deployed on different
GPU workers over 100 rounds of experiments.1 Experimental
results demonstrate that the computation latency of feed-forward
computation and backward propagation is highly predictable and
increases almost linearly with the number of assigned samples
|πi,k|. Similar observations can be found in [4]. For each learning
job, the computation latency of one training epoch is determined
by the straggler in the selected workers with the maximum delay

l
[p]
i = maxk∈K{l[p]i,k · σi,k}. (3)

The training throughput of learning job i is given by

Vi =
|Πi|

maxk∈K{l[p]i,k · σi,k}
, (4)

which represents the number of data samples that the learning
system can process in a given amount of time.

1See Section VI-A for details of the experimental setup.

Fig. 2. Relationship between the computation latency and the number of
assigned data samples πi,k to workers equipped with various types of GPU.

Communication Latency: Each worker sends 2(Ki − 1)
chunks to each of its two neighbors. The first round of Ki − 1
chunks received is added to the buffer at the receiving worker,
whereas the second round of Ki − 1 chunks replaces the values
held in the buffer. Let rk,k′ denote the data transfer rate between
worker k and k′, where k, k′ ∈ κi denote the predecessor and
successor workers within a ring communication topology. In
Ring-AllReduce, the communication latency is determined by
the bottleneck link, i.e.,

rmin
i = min

k,k′∈κi

{rk,k′ }. (5)

The communication latency of one training epoch is

l
[c]
i =

2(
∑

k∈K σi,k − 1)Di

rmin
i ·∑k∈K σi,k

. (6)

Please note that the latency of reduce and model update at the
worker is omitted due to the low computational complexity. The
JCT of learning job i is

Λi = Ti · (l[p]i + l
[c]
i ), (7)

where Ti denotes the number of training epochs. Previous re-
search indicates that gradient descent converges at a rate of
O(1/Ti) [8]. Therefore, Ti can be empirically determined as
in [8] to achieve the desired training accuracy. If the learning
model does not converge to the desired value after Ti epochs,
more training epochs will be assigned, which triggers the re-
computing of the parallelization policy.

C. Throughput Estimator

To find the optimal policy, an S ×K throughput matrix
needs to be maintained, which contains the sample processing
throughput ρi,k of each learning job at each worker. We deploy
a throughput estimator, similar to those found in prior work [4],
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[33], to predict the performance of distributed training. We could
train a few data samples at the worker and use the latency as
the initial value to calculate the throughput. Moreover, during
the training process, the throughput estimation can be refined
on-the-fly as jobs run on different types of workers. After one
training epoch, the well-known Exponentially Weighted Moving
Average (EWMA) method [34] could be used to refine the value
of training throughput.

D. Job Placement and Load Balancing

Given the throughput matrix as input, the computation latency
l
[p]
i and the communication latency l

[c]
i of a learning job for one

training epoch can be calculated as (3) and (6). Given the number
of training epochs Ti and the number of learning jobs S, the
heterogeneity-aware job placement and load balancing problem
is formulated as

P1 : min Λ(σi,k, πi,k) =
1

S

∑
i∈S

Ti · (l[p]i + l
[c]
i ) (8)

s.t.
∑
k∈K

σi,k · |πi,k| = |Πi| , ∀i ∈ S, (8a)

∑
k∈K

σi,k > 0, σi,k ∈ {0, 1}, ∀i ∈ S, (8b)

∑
i∈S

∑
k∈K

σi,k = K, (8c)

∑
i∈S

σi,k ≤ 1, ∀k ∈ K. (8d)

The constraints of P1 ensure that (8a) all data samples are
assigned for training; (8b) at least one worker is selected for
each learning job to avoid starvation;2 (8c) all workers can
participate in training to fully utilize the computing resources;
(8d) a worker can only be assigned to one learning job at
a time. In this paper, we assume two learning jobs will not
be placed on the same worker for training at the same time.
This is because different jobs may have different resource and
security requirements; severe and unpredictable performance
degradation can be observed among co-located learning jobs [4],
[9]. To solve P1, an algorithm must decide 1) how to select the
optimal subset of workers from a pool of heterogeneous workers;
2) how many data samples |πi,k| shall be assigned to each worker
to achieve the desired objective in (8). P1 can be classified into
the resource allocation problem with integer variables, which is
known to be NP-hard [35].

IV. HETEROGENEITY-AWARE SCHEDULER DESIGN

First, let us use a numerical example to show why P1 cannot
be well solved by optimizing the load balancing sequentially
after the job placement decision has been found with existing
solutions. Then, we introduce the design details of our solution.

2This practice ensures that all learning jobs, including smaller ones, receive a
minimum allocation of computational resources. It prevents scenarios where a
lengthy job might delay a series of shorter jobs, leading to a long JCT. Assigning
at least one worker to each learning job is a widely adopted approach [8], which
improves scheduling fairness.

A. Motivating Example

We consider a heterogeneous computing cluster containing
two T4 and two V100 GPU workers. Two learning jobs selected
from Table III, i.e., ResNet-18 trained on Tiny ImageNet and
VGG-19 trained on CIFAR-10, are submitted to the comput-
ing cluster at the same time for parallel training. The training
throughput is

{ρi,k}S×K =
ResNet-18{

VGG-19{

T4︷︸︸︷
275

T4︷︸︸︷
275

V100︷︸︸︷
644

V100︷︸︸︷
644

884 884 1754 1754
}
}.

(9)

The classical Least Attained Service (LAS) policy, used by
Tiresias [6], is adopted here to obtain job placement decisions.
Let V Equal

i denote the throughput of job i assuming it receives
an equal share of computing resources in the cluster. LAS
maximizes mini∈S

∑
k∈K σi,k · ρi,k/V Equal

i to achieve max-min
fairness of training throughput across learning jobs. The job
placement decisions are ResNet-18: {T4, V100} and VGG-19:
{T4, V100}. Given the job placement decisions, load balancing
can be achieved if we assign data samples to each selected worker
according to the training throughput. Then, the computation
latency of a learning job for one training epoch can be calculated
using (2) and (3). Considering the number of training epochs Ti

given in Table III, the average JCT can be calculated as in (8).
In this example, the average JCT is 12,776.8 s if we overlook
the communication latency of model synchronization. Through
exhaustive search, the optimal job placement decisions ResNet-
18: {V100, V100} and VGG-19: {T4, T4} can be obtained
with the lowest JCT of 10,592 s. The sequential optimization
overlooks the impact of load balancing on training latency when
making job placement decisions, introducing a non-negligible
performance loss of 20.6%. This motivates us to design better
solutions to achieve low JCT.

Generally speaking, we propose to solve P1 by decomposing
the problem into sub-problems with the following three stages:
1) through the design of proportional training workload assign-
ment,P1with two types of variablesσi,k andπi,k can be simpli-
fied into a problem with a single type of variable σi,k; 2) rather
than directly determining which workers are assigned to which
jobs, we categorize the feasible solutions based on the potential
partition over the number of selected workers for each learn-
ing job, i.e., Ψ = {(K1, . . ..,KS)|

∑
i∈S Ki = K,Ki ∈ Z+};

3) each sub-problem defined by a feasible solution category in
Ψ can be solved by applying the matching markets method [21]
to obtain the highest training throughput with theoretical guar-
antees. At the same time, the near-optimal JCT can be obtained.

B. Proportional Workload Assignment

For learning job ∀i ∈ S , the computation latency is deter-
mined by the straggler in the selected workers with the maximum
delay l

[p]
i = maxk∈K{l[p]i,k · σi,k}. The computation latency can

be minimized if the workloads can be proportionally assigned
based on the worker processing capacity. According to (2), the
number of assigned data samples for worker k ∈ κi can be
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Algorithm 1: Systematic Enumeration for Feasible Solution
Categories.

Input: Number of learning jobs S, number of workers K.
Output: Set of feasible solution categories Ψ.
Initialization: Ψ← ∅,
{K1,K2, . . .,KS} ← {K − S + 1, 1, . . ., 1}.

1: while {K1, . . .,KS} /∈ Ψ do
2: Add {K1, . . .,KS} to Ψ;
3: K2 ← K2 + 1 if K2 < K̂2 else K2 ← 1;
4: for i = 3 to S do
5: if Ki−1 is set to 1 then
6: Ki ← Ki + 1 if Ki < K̂i else Ki ← 1;
7: end if
8: end for
9: K1 = K −∑S

j=2 Kj ;
10: end while

obtained from {
l
[p]
i =

|πi,1|
ρi,1

= . . . =
|πi,Ki |
ρi,Ki

,∑
k∈K σi,k · |πi,k| = |Πi| .

(10)

From (10), we have l
[p]
i · ρi,k = |πi,k|, k ∈ κi. Then, by

adding them up, we get l
[p]
i ·

∑
k∈K σi,k · ρi,k = |Πi|. This

means

l
[p]
i =

|Πi|∑
k∈K σi,k · ρi,k , (11)

|πi,k| = |Πi| · ρi,k∑
k∈K σi,k · ρi,k , (12)

Vi =
∑
k∈K

σi,k · ρi,k. (13)

The desired objective in (8) can be rewritten as

Λ(σi,k) =
∑
i∈S

Ti

S

(
2(
∑

k∈K σi,k− 1)Di

rmin
i ·∑k∈K σi,k

+
|Πi|∑

k∈K σi,k · ρi,k

)
.

(14)

Through the proportional workload assignment, we only need
to determine which workers shall be selected σi,k ∈ {0, 1}.
Then, the load balancing decision can be obtained based on (12).

C. Feasible Solutions Categorization

As shown in Algorithm 1, the set of all feasible solution
categories Ψ can be derived through systematic enumeration on
Constraints (8b), (8c), and (8d), which determines how many
positive integer solutions exist. Assuming that the values of
{Ki+1, . . ..,KS} are given, the maximum value that Ki can
be assigned is

K̂i = K − (i− 1)−
S∑

j=i+1

Kj , (15)

where the term i− 1 ensures the constraint Kj > 0
is still satisfied for learning job j ∈ {1, . . ., i− 1}. Ini-
tially, {K1,K2, . . .,KS} = {K − S + 1, 1, . . ., 1} is a feasible

solution.3 The value of K2 is continuously increased by 1 until
K2 = K̂2. Then, K2 is set to 1 in the next phase. For any other
learning job i ∈ {3, . . .., S}, if Ki−1 is set from K̂i−1 to 1, Ki

is incremented by 1. If Ki = K̂i, Ki will also be set to 1 next.
At last, K1 is set to K −∑S

j=2 Kj , ensuring (8c) always holds.
We use a simple example to show the systematic enumeration
process. When K = 5 and S = 3, |Ψ| = 6 feasible solution
categories, i.e., {3, 1, 1}, {2, 2, 1}, {1, 3, 1}, {2, 1, 2}, {1, 2, 2}
and {1, 1, 3}, are sequentially added. Theoretical analysis in
previous work shows the set size |Ψ| = (

K−1
S−1

)
for this stars and

bars problem [36]. As we need S steps to generate a feasible
solution category, the computational complexity of Algorithm 1
is O(S · (K−1S−1

)
).

For a given set {K1, . . ..,KS} ∈ Ψ and the average JCT as
calculated in (14), the subproblem of P1 is

P2 : min Λ(σi,k) =
∑
i∈S

Ti

S

(
2(Ki − 1)Di

rmin
i Ki

+
|Πi|∑

k∈K σi,kρi,k

)
(16)

s.t.
∑
k∈K

σi,k = Ki, ∀i ∈ S. (17)

For all feasible solution categories in Ψ, we have
(
K−1
S−1

)
subproblems in total. Later, we will show how the proposed
sampling scheme can greatly reduce the number of examined
categories with a small performance loss in Section V-B.

D. Matching Markets

The difficulty of solving P2 lies in the nonlinearity and
non-convexity of the objective function (16). By observing (13)
and (16), we know that each learning job prefers to select
workers with higher training throughput Vi =

∑
k∈K σi,k · ρi,k

for a lower JCT. This means that high training throughput is
positively correlated with low JCT. Therefore, we map P2 to
the following optimization problem

P3 : max V (σi,k) =
∑
i∈S

∑
k∈K

σi,k · ρi,k

s.t. (17), (18)

which maximizes the training throughput of learning jobs. We
propose an optimal scheme to solve P3 with theoretical guar-
antees. Given the throughput matrix and the desired objective in
(14), a K-dimensional array {ρi,1, . . ., ρi,K} is maintained for
each learning job.

As shown in Fig. 3(a), a preferred graph G is constructed
with function preferred_graph, which selects Ki workers
with larger values in {ρi,1, . . ., ρi,K}. In G, different learning
jobs may compete for the same worker, but each worker only
processes one learning job at a time. Then, the constricted set
{Kc,Sc} is created using function constricted_set, where
Kc represents the set of competed workers, and Sc represents
the set of competing jobs.

3We assume K ≥ S to ensure that at least one worker will be assigned to
each learning job.
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Fig. 3. Illustration of matching markets.

Then, a scheme based on matching markets is proposed to
tackle the competition problem. The pseudo code is shown
in Algorithm 2. The workers and learning jobs are consid-
ered as “sellers” and “buyers”, respectively. To obtain the
optimal matching between “sellers” and “buyers”, the prices
of all workers {p1, . . .., pK} are introduced. Initially, we set
{p1, . . .., pK} = {0, . . ., 0}. The basic idea of matching markets
is to gradually increase the prices of competed workers k ∈ Kc

until the constricted set is empty. Next, we show how to set the
price pk in detail. The valuation array Γi is initialized as the
payoff array, i.e.,

Γi ← {ρi,1, . . ., ρi,K}, ∀i ∈ S. (19)

Let Vi denote the payoff of assigning all preferred workers
(including the competed worker k) to job i ∈ Sc, i.e.,

Vi = sum_top(Γi,Ki), (20)

where function sum_top represents the sum of the largest Ki

elements in array Γi. If worker k is not assigned to job i, the
payoff is

V k
i = sum_top(Γi \ {Γi,k},Ki). (21)

Then, the price of worker k is updated as

pk ← pk +max{1,maxi∈Kc{Vi − V k
i }}, (22)

which means if maxi∈Kc{Vi − V k
i } = 0, pk is increased by the

unit price 1 to ensure the pricing process will continue. The
corresponding payoff of assigning worker k to job i is updated
as

Γi,k ← ρi,k − pk, ∀i ∈ S, ∀k ∈ K. (23)

Unlike the pricing scheme in [21] which always increases
the price by one unit, the proposed pricing scheme ensures that
workerkwill only be assigned to one job i = arg max{Vi − V k

i }
in eachwhile loop. This improves the efficiency of the solution.
The above process is repeated until the constricted set is empty.
Then, the decision σi,k for one feasible solution category can be
obtained from the updated preferred graphGwith no competition
among jobs. For a feasible solution category {K1, . . .,KS} ∈
Ψ, the highest training throughput can be obtained. By consid-
ering all feasible solution categories in Ψ, the near-optimal JCT
can be obtained.

For the example in Section IV-A with two jobs and four
workers, three feasible solution categories, i.e., {3, 1}, {2, 2},
and {1, 3}, are considered. Table II shows the numerical results
yielded by Algorithm 2. The results indicate that if the learning
job with higher computational complexity, i.e., ResNet-18, is

TABLE II
NUMERICAL RESULTS OF THE EXAMPLE IN SECTION IV-A YIELDED BY

HETEROGENEITY-AWARE SCHEDULER

Algorithm 2: Heterogeneity-Aware Scheduler.
Input: Set of feasible solution categories Ψ.
Output: σ∗i,k, π∗i,k.
Initialization: pk, σi,k, σ

∗
i,k ← 0,Λ∗ ← inf , ∀i ∈ S ,

∀k ∈ K.
1: for feasible solution category {K1, . . .,KS} ∈ Ψ do
2: Γi ← {ρi,1, . . ., ρi,K}, ∀i ∈ S;
3: G ← preferred_graph({Γi,Ki}, ∀i ∈ S);
4: {Kc,Sc} ← constricted_set(G);
5: while {Kc,Sc} 
= ∅ do
6: Select k ∈ Kc;
7: for i ∈ Sc do
8: Vi ← sum_top(Γi,Ki);
9: V k

i ← sum_top(Γi \ {Γi,k},Ki);
10: end for
11: pk ← pk +max{1,max{Vi − V k

i }};
12: Γi,k ← ρi,k − pk, ∀i ∈ S;
13: G ← preferred_graph({Γi,Ki}, ∀i ∈ S);
14: {Kc,Sc} ← constricted_set(G);
15: end while
16: Obtain σi,k based on G and calculate Λ based on (8);
17: If Λ < Λ∗, σ∗i,k ← σi,k, Λ∗ ← Λ, ∀i ∈ S , ∀k ∈ K;
18: end for
19: Obtain load balancing decision π∗i,k based on (12);

assigned more computational resources, the average JCT is more
likely to be reduced. Algorithm 2 examines all feasible solution
categories, thereby ensuring that the scenario where ResNet-18
is assigned more workers is considered to approximate the
optimal solution better. In this case, the job placement decisions
ResNet-18: {T4, T4, V100} and VGG-19: {V100} with the JCT
of 11,225.8 s are selected as the solution. When compared with
the optimal solution, the performance loss in terms of JCT is
only 6.0%.

E. Theoretical Analysis

First, the convergence of our design is proved.
Theorem 1: The pricing process in Algorithm 2 must come

to an end within a limited number of steps.
Proof: During the pricing process, each worker is either

assigned to a learning job or remains idle. The while loop
in Algorithm 2 (Lines 5–15) only ends when the constricted set
is empty; otherwise, it continues with increased prices pk ≥ 0,
k ∈ K. We define

P =
∑
i∈S

Vi +
∑
k∈K

pk. (24)

Then, we prove that P has the following two properties:
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1) P ≥ 0 always holds during the pricing process. Let
{i1, k1} be an arbitrary assignment in the preferred graph G.
� If {i1, k1} /∈ {Kc,Sc}, no other jobs are competing for

worker k1. For {i1, k1}, we have

Γi1,k1
+ pk1

= ρi1,k1
≥ 0. (25)

� If {i1, k1} ∈ {Kc,Sc}, other jobs are competing for worker
k1. Let i2 be an arbitrary competitor, {i2, k1} ∈ {Kc,Sc}.
For an arbitrary worker k2 which is not in the preferred
graph G, we have

ρi2,k1
− pk1

≥ ρi2,k2
− pk2

. (26)

For i2 and k2, we have

Γi2,k2
+ pk2

= ρi2,k1
− pk1

+ pk2
≥ ρi2,k2

≥ 0. (27)

AsK ≥ S, we can always find a unique unassigned worker
for each competitor with Γi2,k2

+ pk2
≥ 0. For all other

unassigned workers, pk ≥ 0, k ∈M. According to (25)
and (27), P ≥ 0 always holds.

2) P decreases with the increase of prices: The prices are
initialized as {p1, . . .., pK} = {0, . . ., 0}. Initially, we have

Pmax =
∑
i∈S

sum_top({ρi,1, . . ., ρi,K},Ki). (28)

Then, in each round of pricing, the worker in the constricted
set raises its price by at least one unit. Please note that multiple
jobs are competing for the worker. According to (20) and (23),∑

i∈S Vi −
∑

k∈K pk decreases by at least one unit in each round
of pricing. To sum up, the pricing scheme starts with P = Pmax,
and P cannot drop below 0. So the pricing process must end
within Pmax steps.

Theorem 2 verifies the optimality of our design.
Theorem 2: Algorithm 2 yields the highest training through-

put.
Proof: We prove the optimal solution to P3 can be obtained

for each feasible solution category. Constraint (8c) ensures all
workers are assigned to learning jobs. When the pricing process
ends with {Kc,Sc} = ∅, each worker is assigned to a learning
job. As shown in (29), let {i1, k1} and {i2, k2} denote two
randomly selected job placement decisions.

{. . ., ρi1,k1
, . . ., ρi1,k2

, . . .},
{. . ., ρi2,k1

, . . ., ρi2,k2
, . . .}. (29)

To verify the optimality, we need to prove that interchanging any
two pairs of job placement decisions cannot further increase the
total valuations V in (14), i.e.,

ρi1,k1
+ ρi2,k2

≥ ρi1,k2
+ ρi2,k1

. (30)

With the pricing method in Algorithm 2, we have{
ρi1,k1

− pk1
≥ ρi1,k2

− pk2
,

ρi2,k2
− pk2

≥ ρi2,k1
− pk1

.
(31)

Fig. 4. Average JCT of learning jobs for all feasible solution categories in Ψ
without job prioritizing.

This means that (30) holds. We conclude that the optimal solu-
tion can be obtained for each feasible solution category in Ψ.

Proposition 1: The computational complexity of Algorithm 2
is O(S ·K · Pmax ·

(
K−1
S−1

)
).

Proof: The computational complexity of calculating the K-
dimensional arrayΓi for allS learning jobs isO(S ·K) (Line 2).
Then, to obtain the preferred graph, all training throughput arrays
are sorted via the radix sort algorithm. The sorting complexity
is O(S ·K) (Line 3). Then, all workers need to be considered to
determine the constricted set with the complexity ofO(K) (Line
4). As all learning jobs may compete for a worker, the calculation
of the worker price needs S steps at most (Lines 6–11). Further-
more, the preferred graph and the constricted set are updated with
the complexity of O(K + S ·K) (Lines 12–14). As discussed
above, the while loop is performed for Pmax times at most.
Furthermore, the worker assignment (Lines 17–18) needs K
steps at most. The optimal assignment for a feasible solution
category needs (S ·K + S +K) · Pmax + 2S ·K + 2K steps
at most. The computational complexity for a feasible solution
category is O(S ·K · Pmax). Considering all feasible solution
categories in Ψ, the computational complexity of Algorithm 2
is O(S ·K · Pmax ·

(
K−1
S−1

)
).

V. FAIR SCHEDULING WITH LOW COMPLEXITY

Algorithm 2 has the limitations of 1) high computational
complexity, and 2) ignoring the fairness of scheduling among
learning jobs. In this section, we analyze the fairness of
Algorithm 2 and then propose to improve the scalability and
fairness of our design through a sampling scheme.

A. Fairness Analysis

Algorithm 2 yields the placement decision for each fea-
sible solution category {K1, . . .,KS} ∈ Ψ. Fig. 4 shows the
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Fig. 5. Fairness degrees of all feasible solution categories in Ψ without job
prioritizing.

average JCT of all feasible solution categories. We consider
S = 4 learning jobs trained by K = 15 and K = 30 workers,
respectively.4 In Fig. 4, the IDs of feasible solution categories are
sequentially generated by Algorithm 1. For example, withS = 4
and K = 15, we have the first feasible solution category (ID =
1) {K1, . . .,KS} = {11, 1, 1, 1} and the last feasible solution
category (ID = 364) {K1, . . .,KS} = {1, 1, 1, 11}. Then, let us
examine the fairness degree of the placement decision yielded
by Algorithm 2 for all feasible solution categories.

The fairness can be achieved if system resources are equally
shared among all learning jobs. With the ideally equal resource
allocation, the JCT of learning job i is

Λ
[e]
i =

∑
i∈S

Ti

(
2(K/S − 1)Di

r ·K/S
+

|Πi|
S ·∑k∈K ρi,k

)
. (32)

Recall that Λi denote the JCT of learning job i yielded by
Algorithm 2 for a feasible solution category {K1, . . .,KS} ∈
Ψ. Then, Λi/Λ

[e]
i represents the deviation degree of scheduling

from the equal resource allocation for job i. According to Jain’s
fairness index [37], the fairness degree for a feasible solution
category is

F (K1, . . .,KS) =
(
∑

i∈S Λi/Λ
[e]
i )2

S ·∑i∈S(Λi/Λ
[e]
i )2

. (33)

The result ranges from 1/S (the worst case) to 1 (the best
case) and reaches its maximum when the resources are equally
allocated (∀Λi/Λ

[e]
i = 1). Fig. 5 shows the fairness degrees of

all feasible solution categories. The range of fairness degrees is
[0.527, 0.994] forK = 15 and [0.384, 0.999] forK = 30. Recall
that for a feasible solution category {K1, . . .,KS} ∈ Ψ, Ki

denotes the number of assigned workers for job i. Algorithm 2

4See Section VI-A for details of the experimental setup.

Algorithm 3: Job Prioritizing for Sampling.
Input: ρi,k, Ψ.
Output: σ∗i,k, π∗i,k.

1: Sort jobs S based on Ti·|Πi|
S·∑k∈K ρi,k

in ascending order;
2: Select N samples uniformly from set

Ψ[α
(
K−1
S−1

)
,
(
K−1
S−1

)
], α ∈ (0, 1);

3: Invoke Algorithm 2 on N samples to calculate the JCT
Λn and the fairness degree Fn, n ∈ N ;

4: Select the sample
n← arg max{βminn∈N {Λn}

Λn
+ (1− β)Fn} as the

solution and obtain near-optimal decisions σ∗i,k, π∗i,k;

considers all feasible solution categories. In heterogeneous com-
puting clusters, we can always find a feasible solution category
that achieves nearly equal resource allocation. This explains
why some feasible solution categories produce high scheduling
fairness, as in Fig. 5.

B. Sampling for Low Complexity and Fairness

The computational complexity of the proposed scheme is
mainly determined by the total number of feasible solution
categories |Ψ| = (

K−1
S−1

)
, which increases rapidly with more

workers and learning jobs. For example, we have
(
14
3

)
= 364

and
(
29
3

)
= 3, 654. Intuitively, to obtain near-optimal decisions,

we do not need to consider all feasible solution categories in
Ψ. In this way, the computational complexity is reduced with a
smaller set size.

As shown in Fig. 4, a rough and changing periodicity of the
incurred JCT can be observed.5 The main reason for the period-
icity is that resources are fungible or substitutable (i.e., learning
jobs can make similar progress using different resources). For
example, with K = 15, feasible solution categories {6, 6, 2, 1}
(ID = 18) and {5, 5, 2, 3} (ID = 159) incur similar average
JCT of 4,047.59 s and 4,046.35 s. The periodicity motivates
the use of sampling for low computational complexity. If we
randomly select a set of samples N (with size |N | = N ) from
Ψ and choose the sample with the lowest JCT as the solution,
non-negligible performance loss can be observed. Experimental
results in Section VI-B show that when N = 20, the average
JCT is increased by 7.65% and 10.43% for K = 15 and 30,
respectively.

For better approximation, the Job Prioritizing for Sampling
scheme is proposed in Algorithm 3. In Ψ, the values of
{K1, . . .,KS} change from {K − S + 1, . . ., 1} to {1, . . .,K −
S + 1}. The value of Ki in the rear part of {K1, . . .,KS}
gradually increases. The value Ti·|Πi|∑

k∈K ρi,k
denotes the compu-

tational latency if all workers are assigned to job i, which

5We believe the characteristic of periodicity remains applicable to other
resource allocation problems, irrespective of the specific experimental configura-
tions. We test the performance of feasible solutions categorization and matching
markets to other resource allocation problems, e.g., caching in distributed storage
systems [38]. Similar periodicity and “dense” structure can be observed. This
indicates that our design might be a potential solution to solve other resource
allocation problems.
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Fig. 6. Average JCT of learning jobs for all feasible solution categories in Ψ
with job prioritizing.

could be used to estimate its computational complexity. All
jobs S are sorted based on their value in ascending order.
Then, for a feasible solution category in the rear part of Ψ,
jobs with higher computational complexities are assigned more
workers, which helps reduce the JCT. Fig. 6 shows the average
JCT after job prioritizing; a trend of decline can be observed.
Therefore, we only select N samples in the rear part of Ψ, i.e.,
set Ψ[α

(
K−1
S−1

)
,
(
K−1
S−1

)
], α ∈ (0, 1). Experimental results show

that when N = 20 and α = 0.7, the average JCT is increased
by 2.95% and 5.10% for K = 15 and 30, respectively. More
samples help improve the performance of approximation.

Another observation we get from Figs. 4 and 5 is that the
feasible solution category with the lowest JCT may not yield
the highest fairness at the same time. For example, withK = 15,
the 94th feasible solution category {6, 5, 2, 2} incurs the lowest
JCT of 3,948.9 s with the fairness degree of 0.824. LetΛn andFn

denote the incurred average JCT and fairness degree of feasible
solution category n, n ∈ N . To strike a balance between JCT
and fairness, we will select the sample

n← arg max

{
β
minn∈N {Λn}

Λn
+ (1− β)Fn

}
, (34)

as the solution for near-optimal decisions, β ∈ [0, 1]. When β =
1, we focus on low JCT. When β = 0, we focus on high fairness.
As the matching markets method needsO(S ·K · Pmax) steps to
finish, the computational complexity of Algorithm 3 is reduced
to O(S ·K · Pmax ·N).

C. Implementation

Let us integrate all the proposed schemes and show how
they could be implemented in practice. The design workflow
is illustrated in Fig. 7. Heterogeneity-Aware Scheduler (HAS):
Given the numbers of active jobs S and workers K, the set of

Fig. 7. Workflow of our design.

TABLE III
DEEP LEARNING JOBS USED IN THE EXPERIMENTS

feasible solution categories Ψ can be derived through the sys-
tematic enumeration in Algorithm 1. UsingΨ and the throughput
matrix as input, the placement decision can be obtained based on
matching markets in Algorithm 2. Job Prioritizing for Sampling
(JPS): Based on the design of HAS, the sampling scheme is
applied to construct the sparsification of feasible solution cat-
egories, reducing the computational complexity with improved
scheduling fairness. Moreover, the throughput matrix is refined
on-the-fly based on the feedback from DL model training. The
parallelization policy will be recomputed when a reset event
occurs, e.g., job arrival or completion, worker failure, etc. For
job completion, if the learning model does not converge to the
desired value after Ti epochs, more epochs are assigned for a
new round of training.

VI. PERFORMANCE EVALUATION

We deploy a testbed of heterogeneous deep learning cluster
hosted on Compute Canada [39]. Our solutions are implemented
in Python to generate the parallelization policy for real-world
deep learning applications.

A. Experiment Setup

Testbed: We built a heterogeneous deep learning cluster con-
taining 15 and 30 workers on Compute Canada. Each worker is
equipped with one of three kinds of GPU cards, i.e., NVIDIA
Tesla V100, P100, or T4. Under default settings, the ratio of
numbers for the three kinds of workers is 1:1:1. Subsequently,
we employ data parallelism to train real-world deep learning
applications as listed in Table III, utilizing the DistributedDat-
aParallel framework provided by PyTorch [44]. These training
jobs are submitted and executed on the Compute Canada infras-
tructure, with the management facilitated by the Slurm Workload
Manager [40].

Simulator: To evaluate system scalability, we use the data
of training jobs collected from the testbed, i.e., the training

Authorized licensed use limited to: Memorial University. Downloaded on May 02,2024 at 17:21:47 UTC from IEEE Xplore.  Restrictions apply. 



884 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Fig. 8. Topology of the simulated learning system.

throughput of various workers, to simulate a learning system
with more workers. Unless otherwise specified, the hardware
configuration follows the same distribution as the 15-worker
scenario. The heterogeneity in the GPU-oriented communica-
tion network is also considered as the data transmission rates
within a single node (via PCIe or NVLink) and across nodes
(via LAN) could be different. As shown in Fig. 8, multiple
GPUs accommodated within a node are interconnected using
PCIe or NVLink links [41]. We assume that every computing
node is equipped with 5 GPU workers, which is below the upper
limit of GPUs that can be directly connected [41]. The GPU-
to-GPU bandwidth inside a node is set to 300 Gbps. Then, all
computing nodes are interconnected with switches arranged in a
multi-tier Fat-tree network topology. This is because traditional
data center clusters are the leading architectures to support DNN
training, providing uniform bandwidth of 10 Gbps between node
pairs [18], [42], [43].

Learning Jobs: We evaluate the performance of our design
with five well-known deep learning applications imported from
PyTorch [44]. The five deep learning jobs can be classified
into two types, i.e., CNN and Transformer. The features of five
learning jobs, the used datasets for training, and the number
of training epochs Ti are shown in Table III. The validation
accuracy after Ti epochs of training is also provided. Under
default settings, S = 4 learning jobs are considered. Then, in
Section VI-B1, we evaluate the scalability of our design by
incrementally increasing S from 3 to 5.

Parameter Setting: Under default settings, we configure α
and β to be 0.7 and 1.0, respectively, as these values result in the
lowest JCT for the proposed scheme JPS. The impact of other
parameter settings is assessed in Section VI-B1.

Baselines: Four other schemes are introduced as baselines.
The first is Optimus [8]—It is a greedy method designed to
solve the learning job placement problem. First, each learning
job is allocated with one worker to avoid starvation. Then, all
jobs are sorted according to their marginal gains of reduced JCT
with added workers. Optimus iteratively selects the job with the
largest marginal gain and adds one worker to it. Please note that
load balancing is not considered in [8], i.e., the training dataset
is divided into equal-sized parts to feed the workers. By using
heuristics, Optimus is highly efficient with the computational
complexity of O(S ·K). The second is Optimus with Load
Balancing (Optimus-LB)—For a fair performance comparison,
we extend Optimus with the Proportional Workload Assignment
scheme designed in Section IV-A to accommodate the worker
heterogeneity. The third is exhaustive search—We consider all
feasible worker selection decisions to find the global optimal

Fig. 9. Normalized JCT (w.r.t. exhaustive search) of various schemes.

solution, minimizing the training latency of all learning tasks.
Considering the heterogeneity of workers, exhaustive search
also proportionally assigns training workloads to the selected
workers for a fair performance comparison. The time-consuming
exhaustive search scheme is used as a lower bound to evaluate
the performance of our design.

The three baselines above are static policies, which precom-
pute placement decisions at the beginning of job submission. The
decisions will not change during the training process. Similar
to the proposed HAS and JPS schemes, the static policies can
be extended to dynamic policies by considering reset events.
For a fair performance comparison with the dynamic policies,
Gavel [4] is introduced as the fourth baseline since the placement
decisions of these schemes will be recomputed occasionally
during the training process. Gavel predefines the number of
requested GPUs scale_factori for each learning job i ∈ S , and
calculates the fraction of wall-clock time a learning job should
spend on each type of GPU. Then, Gavel uses a round-based
scheduling scheme to ensure that the average resource allocation
each learning job receives over multiple rounds is close to the
computed allocation. Please note that Gavel only supports dis-
tributed training over a single type of GPU in a round, although
different types of GPUs may be selected over different rounds.
Therefore, the training dataset is divided into equal-sized parts
for load balancing in a round.

B. Evaluation Results

1) Without Reset Events: Figs. 9–14 compare the perfor-
mance of various schemes without considering reset events first.
All four schemes generate static policies at the beginning of
job submission. Fig. 9 shows the normalized JCT with regard
to the lowest value yielded by exhaustive search. Note that
exhaustive search incurs unacceptable long algorithm running
time (ART), as shown in Table IV. By using heuristics with no
performance guarantee, Optimus-LB incurs performance losses
of 15.1% for 15-worker and 30-worker scenarios, with negligible
computational overheads.

In contrast, the proposed HAS scheme classifies all feasible
solutions into different categories and uses matching markets
for decision making, which incurs the same average JCT as
exhaustive search but with a much lower ART. The computa-
tional complexity of HAS can be further reduced via sampling
without incurring much performance loss. Fig. 9 illustrates the
average JCT of the proposed JPS scheme over 100 rounds
of execution and its 90% confidence interval. Compared with
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TABLE IV
THE AVERAGE ALGORITHM RUNNING TIME (ART) OF VARIOUS SCHEMES

Fig. 10. Fairness degree of various schemes.

Fig. 11. Average JCT of various schemes with the increased number of jobs
S.

exhaustive search, JPS (N = 60) incurs performance losses of
0.54% and 2.04% in JCT for 15-worker and 30-worker sce-
narios, respectively. More importantly, compared with HAS,
the ART is reduced by 4.86× and 49.15×. This indicates that
compared with exhaustive search and HAS, JPS scales well with
an increasing number of workers. Fig. 10 shows the fairness of
various scheduling schemes. Under the default settings with β,
the proposed HAS and JPS schemes only focus on low JCT,
incurring the fairness degree ranging from 0.779 to 0.829.

Impact of S: Fig. 11 shows the average JCT of various
schemes withS increasing from 3 to 5. Compared with Optimus-
LB, JPS (N = 60) incurs lower JCT ranging from 9.38% to
14.5%. Compared with exhaustive search, JPS (N = 60) incurs
performance loss ranging from 0.53% to 5.68%. As shown in
Table IV, the ART of exhaustive search and HAS is increased
by 82.17× and 143.18×, respectively. In contrast, the ART of
JPS (N = 60) is only increased by 3.16×, which demonstrates
the efficiency of the proposed sampling scheme.

Impact of α on JPS: The value of α affects the performance
of sampling. Let K = 15 and α = [0, 0.9], (1− α)

(
K−1
S−1

)
de-

creases from 364 to 36. As shown in Fig. 12, with the increase of
α from 0 to 0.7, more categories in the front part ofΨwith higher
JCT are not considered in sampling. The incurred JCT decreases.
However, the lowest JCT is yielded in the 276th category. With
the further increase ofα, more and more categories with low JCT

Fig. 12. Impact of α with K = 15.

Fig. 13. Impact of β with K = 15 and N = 40.

are also eliminated from sampling. The incurred JCT increases
with the further increase of α from 0.7 to 0.9.

Impact of β on JPS: The weight β strikes a trade-off between
JCT and fairness. For example, taking N = 60 samples from Ψ,
with the increase of β from 0 to 1.0, the average JCT decreases
from 4,301.35 s to 3944.17 s. The fairness degree decreases from
0.947 to 0.821.

Impact of Heterogeneity Degree: Based on the throughput
ρi,k, the heterogeneity degree among workers is defined as

H =

∑
k∈K

∑
i∈S ρi,k

K ·mink∈K
∑

i∈S ρi,k
. (35)

The intuition of (35) is that if the workers are homogeneous
with the same training throughput, the lowest heterogeneity
degree H = 1 can be achieved. Under the default setting, the
heterogeneity degree is H = 1.15, which becomes higher when
more workers are equipped with the more powerful Tesla V100
as opposed to T4 in the experiments. Fig. 14 shows the average
JCT of various schemes with the increase of heterogeneity de-
gree from 1.1 to 1.26. With more powerful workers, the average
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Fig. 14. Impact of heterogeneity degree H with K = 15.

Fig. 15. Impact of prediction errors ε (%).

Fig. 16. Impact of the number of workers.

JCT decreases. Compared with exhaustive search, Optimus in-
curs a performance loss ranging from 42.09% to 18.07% In con-
trast, HAS achieves the optimal JCT when H = 1.1, 1.15, and
1.21, and incurs a performance loss of 1.28% when H = 1.26.
Moreover, JPS (H = 60) incurs a performance loss ranging from
0.49% to 1.9%. Compared with Optimus, JPS (H = 60) reduces
the average JCT ranging from 41.4% to 15.87% at the cost of
acceptable computational overhead.

Impact of Prediction Errors: As we cannot ensure that the
throughput estimator is always accurate, how the prediction error
affects the performance is quantitatively analyzed. Let ρ∗i,k and
ε denote the actual throughput and the prediction error upper
bound, respectively. The predicted throughput is randomly gen-
erated in interval [(1− ε) · ρ∗i,k, (1 + ε) · ρ∗i,k]. Fig. 15 shows the
average JCT of various schemes over 100 rounds of execution.
With the increase of ε from 0 to 30%, the JCT yielded by the
proposed HAS and JPS schemes is only increased by 3.75% and
4.3%, respectively. The results demonstrate the robustness of
our design against prediction errors.

Impact of K: Fig. 16 shows the average JCT of various
schemes with the increasing number of workers. Please note that
HAS is not applied to the scenarios of K = 200 and K = 300
due to the prohibitively high computational overheads. With the
increase of K, the average JCT produced by all four schemes
decreases as more computational resources help to reduce the

TABLE V
THE AVERAGE ALGORITHM RUNNING TIME (ART) OF VARIOUS SCHEMES

Fig. 17. Performance comparison of various schemes with/without reset
events.

computation latency. As shown in Fig. 16, JPS consistently
achieves lower JCT compared to Optimus and Optimus-LB.

However, the performance gain of JPS over Optimus-LB
diminishes with the continued increase ofK. This is because the
communication latency, which is determined by the bottleneck
link, occupies an increasing proportion of the overall training la-
tency. For example, the JPS scheme (N = 40) yields an average
communication latency of 68.86 s and an average computation
latency of 201.30 s when K = 300. In contrast, Optimus-LB
yields an average communication latency of 69.13 s and an
average computation latency of 217.96 s while with reduced
ART as shown in Table V. The results show that the proposed
JPS scheme works well when applied to a cluster comprising tens
to hundreds of GPU workers. For larger-scale worker scenarios,
it may be more advantageous to use Optimus extended with
the proposed Proportional Workload Assignment scheme, i.e.,
Optimus-LB.

2) With Reset Events: When a job completion happens, the
policy will be recomputed among the remaining active jobs.
As shown in Fig. 17, compared with the static policy, the
average JCT is reduced ranging from 17.01% to 41.67%. Policy
recomputation with reset events is more beneficial for reducing
the makespan of learning jobs, where makespan represents the
maximum JCT of learning jobs. During the training process, the
jobs requiring higher computational capacity are assigned more
workers later. As shown in Fig. 17, the makespan is reduced
ranging from 27.34% to 44.35%.

Then, we compare the performance of the dynamic policies
considering reset events with Gavel. Gavel requires the number
of requested GPUs scale_factori as prior information. As Gavel
supports distributed training over a single type of GPU in a
round, the maximum value of scale_factori is 5 to ensure the
allocation does not oversubscribe GPU workers. Fig. 18 shows
the average JCT of learning jobs for different predefined values
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Fig. 18. Average JCT of using Gavel with the increased value of predefined
scale_factori for a learning job is shown. During this period, the scale factors
of other learning jobs are set to 5.

of scale_factori. The average JCT decreases with the increased
value of scale_factori from 1 to 5, while keeping the scale factors
of other learning jobs at 5. The lowest JCT of using Gavel can
be achieved when the scale factors of four learning jobs are set
to [5, 5, 5, 5].

However, limiting distributed training to a single type of GPU
in a round cannot fully utilize the computational resources in
heterogeneous computing clusters. Unlike Gavel, the proposed
HAS and JPS schemes can schedule distributed training over
multiple types of GPUs at a time. This means the number of
allocated GPUs could be greater than 5 for computationally
intensive learning jobs. As shown in Fig. 17, compared with
Gavel, the average JCT and the makespan yielded by HAS with
reset events are decreased by 21.2% and 71.3%, respectively.

VII. CONCLUSION AND FUTURE WORK

This article investigated the multi-job placement problem
while taking into account job sizing and load balancing in het-
erogeneous deep learning clusters, aiming to reduce the average
JCT of learning jobs. To be specific, we considered the widely
used Ring-AllReduce architecture with data parallelism for dis-
tributed training. To accelerate the training process, multiple
learning jobs may compete for computational resources. Con-
sidering the performance heterogeneity of workers, this paper
proposed a novel scheme based on proportional training work-
load assignment, feasible solution categorization, and matching
markets with theoretical guarantees. After job prioritizing, we
identified the declining trend of incurred JCT among feasible
solution categories. A sampling-based scheme was proposed to
reduce the computational complexity while ensuring scheduling
fairness. We deploy a testbed of heterogeneous deep learning
cluster hosted on Compute Canada for performance evaluation.
Evaluation results demonstrated that, when compared with the
globally optimal policy, the sampling-based scheme only incurs
a performance loss of about 2% with much higher solution
efficiency.

In future work, we plan to 1) focus on the auto-tuning of α
and β to improve the performance of sampling, and 2) extend
the considered scenario from data parallelism to model/hybrid
parallelism.
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