
A Learning-Based Data Placement Framework
for Low Latency in Data Center Networks

Kaiyang Liu , Student Member, IEEE, Jun Peng ,Member, IEEE,

Jingrong Wang , Student Member, IEEE, Boyang Yu , Student Member, IEEE, Zhuofan Liao ,

Zhiwu Huang ,Member, IEEE, and Jianping Pan , Senior Member, IEEE

Abstract—Low-latency data service is an increasingly critical challenge for data center applications. Inmodern distributed storage

systems, proper data placement helps reduce the datamovement delay, which can contribute to the service latency reduction

tremendously. Existing data placement solutions have often assumed the prior distribution of data requests or discovered it via trace

analysis. However, data placement is a difficult online decision-making problem facedwith dynamic network conditions and time-varying

user request patterns. The conventional static model-based solutions are less effective to handle the dynamic system.With an overall

consideration of datamovement and analytical latency, we develop a reinforcement learning-based framework DataBot+, automatically

learning the optimal placement policies. DataBot+ adopts neural networks, trainedwith a variant ofQ-learning, whose input is the

real-time data flowmeasurements and whose output is a value function estimating the near-future latency. For instantaneous decision

making, DataBot+ is decoupled into two asynchronous production and training components, ensuring that the training delay will not

introduce extra overheads to handle the data flows. Evaluation results driven by real-world traces demonstrate the effectiveness of our

design.

Index Terms—Data center network, data placement, reinforcement learning, neural networks

Ç

1 INTRODUCTION

CURRENTLY, we have witnessed the explosive growth of
workloads driven by data-intensive applications, e.g.,

web search, social networks, and e-commerce [2]. The key
challenge is to perform low-latency services with real-time
workloads. Cloud service providers, e.g., Amazon and Goo-
gle, have reported that a slight increase in the overall service
latency may cause observable fewer user accesses and thus
a considerable revenue loss [3].

The user-experienced service latency mainly consists
of the data movement (for both read and write) and ana-
lytical latencies. In order to perform data analytics, data
items should be moved intensively among computing or
storage nodes, as they are not always stored at the

locations where the execution happens. It has been
reported that the storage locations of data items can
influence the completion duration of distributed analyt-
ics, because the movement latency could be the major
bottleneck when data are frequently moved among stor-
age nodes [4]. Various data placement solutions have
been proposed to find the optimal data storage locations
for data movement latency reduction.

Many previous works focus on analyzing various factors
that may influence the data movement latency with the
hand-crafted design of optimization models [5], [6], [7], [9],
[10]. However, time-variant factors contribute to the latency,
including network latency, disk latency and other types of
latency (e.g., RAM, CPU, etc.) [11]. Therefore, these static
optimization model-based methods are not flexible enough
to handle a dynamic system with many uncertainties, such
as unreliable network links, changing user request patterns,
and evolving system configurations.

Moreover, all research efforts above only consider the
data movement latency for the storage location selection.
However, the user-experienced service latency is jointly
determined by data movement and the follow-up data
analytics. Data analytics is the process of inspecting,
cleansing, transforming, and modeling raw data to dis-
cover useful information for decision-making. Different
data analytics frameworks (e.g., MapReduce [12], Dre-
mel [13], and Spark [14]) have been proposed to analyze
large volumes of data. For a particular analytical task at a
certain scale, the analytical latencies could be different
with various frameworks, e.g., tens of minutes for Map-
Reduce, several seconds for Dremel, and sub-seconds for

� K. Liu is with the School of Computer Science and Engineering, Central
South University, Changsha 410075, China, and also with the Department
of Computer Science, University of Victoria, Victoria, BC V8W 2Y2,
Canada. E-mail: liukaiyang@csu.edu.cn.

� J. Peng is with the School of Computer Science and Engineering, Central
South University, Changsha 410075, China. E-mail: pengj@csu.edu.cn.

� J. Wang, B. Yu, and J. Pan are with the Department of Computer Science,
University of Victoria, Victoria, BC V8W 2Y2, Canada.
E-mail: {jingrongwang, boyangyu, pan}@uvic.ca.

� Z. Liao is with the Department of Computer Science, University of Victo-
ria, Victoria, BC V8W 2Y2, Canada, and also with the College of Electrical
and Information Engineering, Changsha University of Science & Technol-
ogy, Changsha 410114, China. E-mail: zfliao@uvic.ca.

� Z. Huang is with the School of Automation, Central South University,
Changsha 410075, China. E-mail: hzw@csu.edu.cn.

Manuscript received 18 Jan. 2019; revised 23 June 2019; accepted 31 Aug.
2019. Date of publication 12 Sept. 2019; date of current version 8 Mar. 2022.
(Corresponding author: Zhiwu Huang.)
Recommended for acceptance by K. Chen.
Digital Object Identifier no. 10.1109/TCC.2019.2940953

146 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

2168-7161 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0003-3392-7016
https://orcid.org/0000-0003-3392-7016
https://orcid.org/0000-0003-3392-7016
https://orcid.org/0000-0003-3392-7016
https://orcid.org/0000-0003-3392-7016
https://orcid.org/0000-0003-4655-3412
https://orcid.org/0000-0003-4655-3412
https://orcid.org/0000-0003-4655-3412
https://orcid.org/0000-0003-4655-3412
https://orcid.org/0000-0003-4655-3412
https://orcid.org/0000-0002-0151-7963
https://orcid.org/0000-0002-0151-7963
https://orcid.org/0000-0002-0151-7963
https://orcid.org/0000-0002-0151-7963
https://orcid.org/0000-0002-0151-7963
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
mailto:
mailto:
mailto:
mailto:
mailto:

Spark. The analytical latency influences the overall service
latency, which should be considered in the data place-
ment problem.

Unlike previous solutions, a generic learning-based
framework DataBot+ is proposed, which automatically opti-
mizes the data placement policy with no need for future
dynamic information. The investigated data placement
problem can be considered as a finite Markov Decision Pro-
cess (FMDP) as (1) the number of nodes for data storage is
limited; (2) each data placement action is independent, and
the performance only depends on the current states and
placement decisions. Hence, the model-free Q-learning,
which is proven to find the optimal action-selection policy
for any given FMDP [15], is used in this work. DataBot+ can
be considered as an agent interacting with the complex
environment. This agent selects the storage locations of data
items and collects the feedback from the environment,
including the current state of request patterns, network con-
ditions, and the resultant end-to-end performance metrics
(e.g., the read/write and analytical latencies) due to these
actions. Data items with short task execution duration are
assigned with higher priorities to optimize the data move-
ment latency, such that the user-experienced latency can be
reduced. Through trials and feedback, DataBot+ learns the
optimal storage locations of data items.

Although as a promising technique, Q-learning may suf-
fer from the curse of dimensionality and the consequently
slow convergence with the increasing scale of state/action
space. Therefore, a neural network (NN) is maintained in
the learning-based framework, approximating the optimal
results with high efficiency and accuracy. Given the current
state information as input, NN learns to output the expected
rewards of data placement actions. The resultant data read/
write and analytical latencies are then utilized as rewards to
train the recurrent model, outputting better data placement
policies over time.

As the major purpose of our design is to make instanta-
neous decisions, it must be ensured that the recurrent NN
training will not incur extra latency to handle the data
flows. The learning-based framework is then decoupled
into two asynchronous components, i.e., the production and
training system, in the implementation. The online decision
making and offline training in parallel change the tradi-
tional workflow of reinforcement learning (RL), which
requires updating the model after each decision. Therefore,
DataBot+ makes instantaneous decisions to query write
locations only with the newly trained NN, without intro-
ducing extra overheads. The main contributions of this
paper are summarized as follows:

1) A generic framework is proposed to learn the opti-
mal data placement policy without assuming the
prior request distribution or future dynamic
information.

2) Both data read/write and analytical latencies are
considered in the storage location selection. Data
items with short analytical latency are with higher
priorities to optimize the data movement latency.

3) With the increasing number of states/actions, RL is
integrated with NN to achieve a quick approxima-
tion. Moreover, the online decision making and

offline training overcome the deficiency of the frame-
work in delaying the request handling.

4) Driven by real-world I/O traces, large-scale evalua-
tions demonstrate that DataBot+ can lower the user-
experienced latency of data service by about 24
percent.

The rest of this work is organized as follows. Section 2 sur-
veys the relatedwork. Section 3 presents the system architec-
ture of the data placement problem. Section 4 provides
the design details of the learning-based data placement
framework DataBot+. Section 5 evaluates the performance.
Section 6 draws the conclusion and lists future work.

2 RELATED WORK

Existing research efforts have indicated that data placement
can enhance the data locality to provide better read/write
performances in data-intensive systems. Assuming that the
data requests can be predicted accurately, Ren et al. [6] for-
mulated the data purchasing and placement as an integer
linear programming problem and designed a close-to-
optimal solution to jointly reduce the service cost and
latency. By analyzing the workload features, Jalaparti
et al. [16] proposed an offline scheduling scheme to jointly
place data and tasks to significantly improve the network
locality. Through trace analysis, Agarwal et al. [19] pro-
posed Volley, an automated data placement scheme to place
data items near end users. Cui et al. [20] constructed a tri-
partite graph to formulate the data placement problem and
proposed a genetic solution to reduce data traffic and
latency in clouds. Assuming data request traffic is fairly
steady for a certain time, Yu et al. [7] proposed a hyper-
graph-based data placement scheme among geo-distributed
data centers. As a follow-up study, Yu et al. [8] proposed a
sketch-based solution for hypergraph sparsification, reduc-
ing the algorithm running time. However, all listed previ-
ous studies are offline solutions without considering the
dynamic information of the system.

As an online scheme, Steiner et al. [17] placed the data
items used in the same task to the same location, reducing
the inter-rack traffic and task completion time. Chowdhury
et al. [18] selected the server with low occupancy links as
the storage location of data write flows to lower the task
completion time. However, the neglect of the following data
read requests may detrimentally influence future read-
related performance. Unlike existing solutions, DataBot+
considers both the read/write and data analytical latencies,
and uses RL to adaptively learn a better data placement pol-
icy with no future assumption about the user requests.

Our work is related to the idea of combining RL and NN
to solve complex online decision-making problems [21],
[22], but we focus on the data placement problem in the
data center network (DCN). Mao et al. [23] used deep rein-
forcement learning to solve the resource management prob-
lem. However, they optimized the expected value of a
manually designed objective function on the basis of the
reward. Different from this study, Mirhoseini et al. [24]
directly used the application execution time as the reward
of RL to optimize the device placement with no need of
designing intermediate cost models. By collecting the flow
level performance metrics in real-time, Nie et al. [25]

LIU ET AL.: A LEARNING-BASED DATA PLACEMENT FRAMEWORK FOR LOW LATENCY IN DATA CENTER NETWORKS 147

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

proposed to use group-based RL method to reduce the TCP
response latency. Chen et al. [26] developed a two-level
deep reinforcement learning system to handle the flow-level
traffic optimization. Motivated by previous studies, the
early version of our work [1] used end-to-end performance
metric as the reward to reduce the overall service latency in
the DCN. Metrics such as measured read/write latencies
are easier to be obtained at lower costs when compared
with link-related metrics. DataBot+ extends the scenario
in [1] by addressing the considerable influence of data ana-
lytics on data placement.

3 SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we describe the architecture of the storage
system and identify the major challenges of the data place-
ment problem.

3.1 System Architecture

The architecture of the storage system is shown in Fig. 1. A
set of storage servers or nodes N (with size jN j ¼ N) is
deployed in the distributed storage system. All data items
are distributed among storage servers. Each storage server
also has computational functions for data analytics. Analyti-
cal applications involving multiple data items may require
the data movement among storage servers. All servers are
connected via a DCN. In order to design a generic data
placement solution, we do not rely on any specific DCN
topologies. Note that our design is only on the basis of the
end-to-end measurements of data flows. Our design can
support any arbitrary DCN topologies, e.g., the tree-based
Clos and Fat-tree, the recursive DCell and BCube, or the
flexible Helios and cThrough [27].

Just as in existing systems [28], a centralized metadata
server is employed to handle the data storage locations. Let
M represent the set of all data items (with size jMj ¼M),
which can be files, blocks or tables in the system. Let xm

denote the file size of data item m, m 2 M. Each data item
is assigned with a unique hashtag, i.e., the hash output
using the index of the data item as the input. When a data
item is written into the system, the metadata server main-
tains the mapping between the hashtag and its storage loca-
tions. When an application on a storage server needs to
retrieve a data item, it first asks the metadata server where
the storage location is through the hashtag. This design
ensures that the data storage location is flexible and can be
changed with no extra data movement overhead.

As shown in Fig. 1, the metadata server also captures the
service logs of the data requests through the state monitor
module. As the data request could be read or write, the for-
mat of log entries is defined as

ðTS;Src;Dst; l
½R�
ij;m; l

½A�
j;mÞ; ifRequest type ¼ Read;

ðTS;Src;Dst; l
½W�
ij;mÞ; ifRequest type ¼Write;

(
(1)

where TS is the timestamp. Src and Dst are the source and
destination nodes of the requests. If the request type is Read
for data analytics, the end-to-end read latency l

½R�
ij;m and the

follow-up analytical latency l
½A�
j;m are included, where i; j are

the source and destination server, respectively, i; j 2 N . Oth-
erwise, if the request type is Write, the write latency l

½W�
ij;m is

recorded. The metadata server has all the information by
itself except the latencies. Therefore, it is only necessary to
report l

½R�
ij;m, l

½A�
j;m and l

½W�
ij;m from the storage servers.

The storage system updates the data storage locations
when users generate data write requests. For the data-inten-
sive system where the data items are frequently fetched and
updated, the proposed learning system is adaptive to the net-
work dynamics. However, for some read-intensive data
itemswith rarewrites, hotspotsmay occur due to the fluctua-
tion of user request patterns. In order to further reduce the
data read latency, the storage system can periodically issue
“pseudo” write request (i.e., the request issued by the sys-
tem, not users) to mitigate hotspots. In each time interval
with length f, if the data item has not been updated by users,
a “pseudo” write operation is executed to update the storage
locations. Note that issuing a “pseudo” write request is not
an actual data write operation. It triggers the system to recal-
culate the storage locations of read-intensive data items with
rare writes. In this design, extra system overheads intro-
duced by periodical “pseudo”write operations are limited.

3.2 Problem Statement

Due to the non-negligible data movement latency, the stor-
age locations of data items can influence the finish time of
distributed analytical tasks. In order to perform low-latency
analytical services, the data placement problem can be clari-
fied as follows: how to select the optimal storage locations
among all available servers when a data item is to be written
or updated?

In the DCN, the service latency includes the data move-
ment latency and the data analytical latency for computing.
Moreover, the data movement latency is the sum of a num-
ber of components, including the transmission, propaga-
tion, processing and queuing latency in the network. It is
hard to obtain a precise latency model of the entire system
faced with the dynamic scenario, e.g., the changing network
conditions and user request patterns. Hence, a generic solu-
tion RL is adopted to solve the data placement problem.
With RL, the placement of data items can be considered as
an agent interacting with the environment and learning the
underlying model through the feedback. Unlike the tradi-
tional solutions aiming at formulating the mathematical
latency models, the used RL chooses an alternative, which
is to purely fit with the statistical patterns of the dynamic
environment.

4 Q-LEARNING-BASED DATA PLACEMENT

In this section, DataBot+ is presented, which is basically a
Q-learning-based solution, to solve the data placement

Fig. 1. Data storage system: Storage servers, data center network,
metadata server, and data flows.

148 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

problem. Q-learning is a classic model-free RL technique,
which has been demonstrated to find an optimal policy for
any given FMDP. The design overview of DataBot+ is first
presented, followed by the design details.

4.1 Design Overview

The design overview of DataBot+ is shown in Fig. 2. The
main principle of the Q-learning-based data placement can
be described by the maintained Q-function

Q : StateðSÞ �ActionðAÞ ! RewardðRÞ:

The dynamic information of the storage system (State S)
can be learned through intensive data flows to understand
which data item should be placed on which node (Action
A) so that the corresponding service latencies can be
reduced. The observed read/write and analytical latencies
are then used as Reward R to train the recurrent model. In
this way, DataBot+ outputs better data placement policies
over time in the long term.

More specifically, before data item m is written into the
storage system at time t, its storage locations are chosen
according to the current state ss and the data placement pol-
icy p, ss 2 S. Then, the action a is executed to place datam to
that location, a 2 A. Until data item m is updated at t0, the
latencies of the last write at t and the following read and
analytical operations between t and t0 can be measured. The
weighted sum of the read/write and analytical latencies is
used as the immediate reward rt of the action a. After the
update operation at t0, the system jumps to another state ss0.
According to [29], the immediate reward rt at time t still has
an impact on the future moments. The optimal Q-value
function Q�ðss; aÞ is the maximum expectation of the long-
term reward

Q�ðss; aÞ ¼ max
p

E
X
t�0

gtrtjss0 ¼ ss; a0 ¼ a;p

" #
; (2)

where g 2 ð0; 1Þ is a discount factor. Q�ðss; aÞ can be
achieved through the Bellman equation as follows:

Q�ðss; aÞ ¼ Ess0 rþ gmaxa0Q
�ðss0; a0Þjss; a½ �: (3)

As shown in Fig. 2, future rewards may be affected by
many factors in a dynamic environment, such as network
conditions and request patterns. The classical RL methods
based on temporal differences [30] fail to guarantee a fast
convergence to the optimal solution. To solve this challenge,
the NN is deployed to approximate the Q-function with
high efficiency and accuracy.

4.2 Q-Function Design

4.2.1 States

The key feature of DataBot+ is that the data placement deci-
sions are made only based on the end-to-end measurements
of data flows, i.e., the measured read/write latencies. Five
categories of state information are included in ss, which can
be derived from the service logs.

Network Conditions. The first category is the network con-
dition, which drastically affects the objective of reducing
the read/write latencies

L
½R�
ij ; L

½W�
ij ; i; j 2 N

n o
; (4)

where L
½R�
ij and L

½W�
ij are the average latencies of read/write

operations on each pair of servers. The link-based metrics,
e.g., bit error rates, are not considered as data placement
happens on the application layer. The source/destination of
the data flow, neither the path nor links, is chosen in this
paper. Note that the measurement of the link-related met-
rics would introduce an extra overhead when compared
with the end-to-end method. Furthermore, unlike the link-
related measurements, the end-to-end method can support
any arbitrary data center network topologies. However, our
design can coexist with any underlying link-based or path-
based flow scheduling.

Then, the real-time network condition is constructed
from the logs in (1). Using l

½R=W�
ij;m and data size xm, the Expo-

nentially Weighted Moving Average (EWMA) method [31]
is adopted to estimate the average read/write latency per
unit size of data L

½R=W�
ij . Specifically, after a data read/write

operation, L
½R=W�
ij is updated by

L
½R=W�
ij ¼ al

l
½R=W�
ij;m

xm

þ ð1� alÞL½R=W�ij ; (5)

where al is the discount factor to lower the importance of
the previous data requests. The advantage of EWMA is that
it only needs Oð1Þ space to maintain the prediction for each
pair of storage servers.

Data Analytical Latency. The second category is the data
analytical latency

L
½A�
j;m; j 2 N

n o
; (6)

where L
½A�
j;m is the estimated analytical latency of data m on

destination server j. The analytical latency is determined by
the task type. Computation-intensive tasks generally need
more analytical time. Moreover, the analytical latency is
also affected by the assigned task priority and the comput-
ing workload level of the server. Based on the l½A�m in (1),
EWMA is also used to estimate the analytical latency of
datam on each server

L
½A�
j;m ¼ all

½A�
j;m þ ð1� alÞL½A�j;m: (7)

Note that the storage location i of data item m does not
influence the analytical latency on the computing server j.
This means the analytical latency cannot be directly opti-
mized with the data placement scheme. How to reduce ana-
lytical latency is beyond the scope of this paper. However,

Fig. 2. An overview of the RL-based data placement.

LIU ET AL.: A LEARNING-BASED DATA PLACEMENT FRAMEWORK FOR LOW LATENCY IN DATA CENTER NETWORKS 149

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

the analytical latency should also be considered in the data
placement problem as it has non-negligible impacts on the
overall user-experienced service latency.

Request Patterns. The third category is the patterns of data
requests

F
½R�
i;m; F

½W�
i;m ; eF ½R�i ; eF ½W�i ; i 2 N

n o
; (8)

which contains: 1) read rate to data item m from source
server i, F

½R�
i;m; 2) write rate to m from i, F

½W�
i;m ; 3) read rate to

all data items from i, eF ½R�i ; 4) write rate to all data items
from i, eF ½W�i . The request patterns reveal how analytical
tasks are generating workloads to the storage system, which
are the primary cause of the network traffic. With the
request information to all data items and the specific data,
our design can make a better decision to select storage
locations.

The Discounting Rate Estimator (DRE) method [32] is
used to construct real-time request pattern information. A
counter is maintained for each item in (8), which increases
with every read/write operation on each pair of servers,
and decreases periodically with a ratio factor ar 2 ð0; 1Þ.
The benefits of DRE are as follows: (1) it reacts quickly to
the changes of the request patterns; (2) it also only requires
Oð1Þ space and update time to maintain the prediction for
each counter.

Data Size. The fourth category is the data size xm as it
affects the read/write latencies of datam.

Source Locations. A 0-1 vector is introduced in state ss to
indicate whether each storage server is the source of the
data write operation or not. The number of data replicas is
denoted by k.1 So we have k servers being 1 in this 0-1
vector. This category should be included as the source loca-
tions of the data flow will influence the latency of the write
operation.

Each data item has a state with the same size. Given the
server numberN , the size of state space is

jssj ¼ 2N2 þ 6N þ 1 ¼ OðN2Þ: (9)

From (9), the number of data items M will not influence
the complexity of the learning-based storage system.

4.2.2 Actions

The action set a is also a 0-1 vector, which decides the desti-
nation locations of the write operation, a 2 A. Similar to the
source locations, we have k servers being 1 in the action set
for each data item.

4.2.3 Rewards

The main purpose of DataBot+ is to achieve a low-latency
service with proper data placement. The read/write and
analytical latencies are influenced by time-varying factors.
The measured latencies, which include these factors, are
directly utilized to derive the immediate reward. The
reward rt is defined as the weighted sum of latencies mea-
sured during time period ½t; t0Þ, where t is the time of writ-
ing data m and t0 is the time of updating the same data for
the next time

rt ¼ v � 1

l½W� þ s
þ ð1� vÞ � 1

jPj �
X
p2P

1

l
½R�
p þ s

� fðl½R�p ; l½A�p Þ; (10)

where l½W� is the write latency at time t, and s is a pre-
defined positive number.2 P represents the set of all read
operations to data m in ½t; t0Þ, and l½R�p is the latency of the
read operation p 2 P.3 As the importance between read and
write may be different in various scenarios, the parameter
v 2 ð0; 1Þ is introduced to make the tradeoff. Moreover,
fðl½R�p ; l½A�p Þ is also a weight function which is defined as
follows:

fðl½R�p ; l½A�p Þ ¼
c

c� 1þ el
½A�
p =l

½R�
p

; (11)

where c is also a pre-defined positive integer, and l½A�p is the
analytical latency.4 Fig. 3 illustrates an example of the
weight function with the variation of c. Assuming the data
read latency l½R�p is 200 ms, the value of the weight function
decreases with the increase of analytical latency l½A�p . This
means that the data item with a lower analytical latency has
a higher priority to minimize the user-experienced service
latency of data read. In contrast, the data item with longer
analytical latency is more focussed on the data write opera-
tion. In the extreme case when l½A�p 	 l½R�p , according to (10),
only the data write will be considered. A server with fewer
data requests may be selected as the write location to mini-
mize the write latency. In this way, the overall network con-
gestion can be eased to benefit the latency reduction of
other data items with short analytical latencies.

Moreover, Fig. 4 illustrates an example of the storage
location selection for data item m. With no data replication,
m can be written into storage node i or j with the write
latency of 200 and 100 ms, respectively. The read latencies
are assumed to be 200 ms if m needs to be fetched from the

Fig. 3. An example of the weight function fðl½R�p ; l½A�p Þ.

1. Similar to the widely used Hadoop Distributed File System
(HDFS) [33], the replica number is assumed to be the same for each
data item. The data item itself and its replicas are not differentiated in
this work, so all of them are considered as data replicas then.

2. The positive number s is introduced to prevent 1
l½R=W� ! 1 when

l½R=W� ¼ 0.
3. If no data read happens in ½t; t0Þ, i.e., P ¼ ? , only data write is con-

sidered, rt ¼ v � 1
l½W�.

4. Please note that not all user-generated requests will incur data
analytics after data movement, e.g., pre-processed data access. If no
analytics is incurred, i.e., l½A�p ¼ 0, the weight function fðl½R�p ; l½A�p Þ ¼ 1.
According to (10), only data read/write latencies will be considered
and optimized in this case. Therefore, the proposed DataBot+ can be
applied to various scenarios with or without data analytics.

150 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

storage node (i or j). The follow-up analytical latencies of m
at node i and j are 200 and 5,000 ms, respectively. For the
read-optimized scenario v ¼ 0:2, without considering the
data analytical latency, node jwill be selected as the storage
location to maximize the reward (with c ¼ 50 and s ¼ 0:1).
The overall service latencies of the analytical tasks at node i
and j are 400 and 5,000 ms, respectively. In contrast, by con-
sidering the analytical latency in the reward function, our
design tends to reduce the data movement latency of the
task with short analytical latency. Therefore, node i is
selected as the storage location. The service latencies will be
200 and 5,200 ms, respectively. This means that the service
latency of the long analytical task is only increased by 4 per-
cent. In return, the service latency of the short analytical
task can be reduced by 50 percent. This example shows the
benefits of the reward function design.

4.3 Asynchronous Implementation

Then, we show how to reduce the size of state space caused
by the number of servers N . For Q-function approximation,
an NN is maintained in the Q-learning-based system. Fig. 5
illustrates the structure of NN, which contains three kinds
of layers, i.e., the input layer, hidden layers, and the output
layer. Each layer has a number of computing neurons.
Given the current state ss as input and the reward ofQ-learn-
ing rt as output, the NN updates the weights of connections
uu between layers of neurons. With the training process of
approximation, the NN learns the weights to output the
expected rewards of data placement actions with high effi-
ciency and accuracy.

Algorithm 1. Production Algorithm

Input:NNweight vector uu, state sst, �.
Output: Data placement action a�t , reward rt, state sstþ1.
1: while A request queries the write destination at t do
2: Generate a random number h 2 ½0; 1�;
3: if h < � then
4: a�t argmaxat2A Fðsst; at; uuÞ;
5: else
6: Randomly select action a�t 2 A;
7: end if
8: if Replay memoryR is full, Rj j ¼ R then
9: Discard the earliest tuple inR;
10: end if
11: Store the tuple ðsst; at; sstþ1; rtÞ in replay memoryR;
12: end while

The traditional workflow of RL requires updating the
model after each decision [21], [30]. The recurrent training

process will introduce extra latencies to handle the requests,
which are undesirable for data center applications. Unlike
previous studies, the design objective is that DataBot+ can
make instantaneous decisions for the requests of querying
write locations. As illustrated in Fig. 6, the learning system
is decoupled into two components, i.e., the production and
training system, in the implementation. They work asyn-
chronously to ensure that the training process of NN will
not introduce extra overheads to handle the data requests in
the production system.

4.3.1 Production System

As shown in Fig. 6, the production system serves the
requests for updating the storage locations via the decision
NN. Given a state sst as input and the current weight vector
uu, the maintained NN can output a vector Fðsst; at; uuÞ (with
size jFðsst; at; uuÞj ¼ N). Each element in Fðsst; at; uuÞ repre-
sents the estimated reward of writing the data item to the
corresponding servers.

Algorithm 1 lists the pseudo code of the production sys-
tem. When a data write/update request is submitted to the
metadata server at time t, the �-greedymethod is applied here
to select the action. Following the uniform distribution, a ran-
domvariable h 2 ½0; 1� is generated. If h < �, the action a�t that
maximizes the output value ofFðsst; at; uuÞ is selected to obtain
a lower read/write latency. Otherwise, a random action will
be selected to search for the unexplored solution space. When
the storage locations are updated with action at, the system is

Fig. 4. An example of the storage location selection between server i
and j for data item m when the data read/write and analytical latencies
are considered.

Fig. 5. NN structure for data placement.

Fig. 6. Production and training system of DataBot+.

LIU ET AL.: A LEARNING-BASED DATA PLACEMENT FRAMEWORK FOR LOW LATENCY IN DATA CENTER NETWORKS 151

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

transitioned into a new state sstþ1. The reward rt can be
observed at the end of time interval t. A tuple

t ¼ ðsst; at; sstþ1; rtÞ; (12)

is stored for each update of the data storage location. All
tuples in a certain period constitute the replay memory R,
which can be used for NN training in the training system.5

4.3.2 Training System

The training system replays the tuples in the relay memory
R periodically to train an updated weight vector uuþ for the
future decisions in the production system. Algorithm 2 lists
the pseudo code of the training system. The mini-batch sto-
chastic gradient descent (SGD) method [29] is adopted to
update the weight vector, minimizing the difference
between the NN output and the target value. According to
the observed reward rt in (10), the target value is calculated
as follows:

yt ¼ rt þ gmax
atþ1
Fðsstþ1; atþ1; uuÞ: (13)

Algorithm 2. Training Algorithm

Input:NNweight vector uu, replay memoryR.
Output: Updated weight vector uuþ.
1: if Replay memoryR is full, Rj j ¼ R then
2: Shuffle all tuples t 2 R to generate mini-batches B;
3: for epoch i 2 I do
4: for each tuple t 2 R do
5: yt rt þ gmaxatþ1Fðsstþ1; atþ1; uuÞ;
6: end for
7: for each mini-batch b 2 B do
8: Update uuþ to minimize (14);
9: end for
10: uu uuþ;
11: end for
12: end if

With SGD, all tuples inR are split into several subsets, i.e.,
mini-batches B. For each mini-batch b 2 B, the weight vector
uuþ is updated by the gradient method to minimize the differ-
ence between the expected reward and the output of NN

Eðss;aÞ
B y� F ss; a; uuþð Þð Þ2
h i

: (14)

In the training process, all mini-batches are trained with
multiple iterations to converge faster. The iteration is
termed as epoch i, i 2 I . The weight vector uu of the decision
NN keeps stable before all records in R have been proc-
essed. Then, after a complete round of processing, the
weight vector uuþ of the training NN is transferred to the
weight of decision NN uu. This variation of the training pro-
cess makes the optimization objective more stable and
therefore avoids fluctuations to some degree.

Using the SGD training method, [34] proved that the NN
can converge to the global optimum at a linear rate if the

initial weights of NN are approximately balanced and the
initial end-to-end matrix has positive deficiency margin.
This ensures that the maintained NN can approximate to
the optimal results with high accuracy and efficiency.

5 PERFORMANCE EVALUATION

Extensive evaluations driven by real-world I/O traces, i.e.,
MSR Cambridge Traces [35], are conducted to evaluate the
performance of the proposed DataBot+.

5.1 Data Trace Description and Experiment Settings

MSR Cambridge Traces. These traces are gathered from an
enterprise data center at Microsoft Research Cambridge,
where data read/write requests are recorded from 36 serv-
ers for a week. The arrival rates of the read/write requests
to all data items eF ½R=W�i are shown in Fig. 7. The request dis-
tribution is biased among 36 servers due to real applica-
tions. The hostname, request type (read/write), transferred
traffic size, and timestamp information are provided for
each request. For the reason of confidentiality, most publicly
available traces, including MSR Cambridge Traces, do not
specify the detailed data items for each request. The total
number of data items is assumed to be M ¼ 10; 000 in the
storage system. Similar to the previous studies [6], [7], the
request rates of data items F

½R=W�
i;m in server i follow a Zipf

distribution with eF ½R=W�i ¼PM
m¼1 F

½R=W�
i;m .

Furthermore, the short-lived tasks occupy most of the
tasks in the cloud analytical system [36]. An experimental
study of response time on Amazon EC2 illustrated that the
latency distribution has long tails [37]. A workload analysis
at Microsoft Bing also demonstrated that data analytical
latencies have long-tailed features [38]. Therefore, the data
analytical latencies are generated following the long-tailed
power-law distribution, which ranges widely from 50 ms to
300 s [39].

Experiment Settings. The experiments are conducted on a
Dell XPS 15 9,560 with an Intel(R) Core i7-7700 processor
running at 2.8 GHz. This machine features 16 GB of RAM
and an NVIDIA GeForce GTX 1,050 graphics card. Mininet
is adopted to emulate the DCN, which can create a high
fidelity network running Linux-based applications [40]. All
nodes are implemented in a typical Fat-Tree topology with

Fig. 7. The read/write request arrival rates of data items based on the
MSR Cambridge Traces are shown. The request distribution is biased
among 36 storage servers.

5. Denote R as the maximum size of the replay memory. If the pool
of the replay memory is full, i.e., Rj j ¼ R, the earliest tuple in R will be
discarded. This ensures only the latest tuples will be stored to reflect
the current network conditions, analytical latencies and request
patterns.

152 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

3 layers of network switches. All link capacities in the topol-
ogy are set to 1 Gbps. At each storage node, a client program
is deployed to initiate the read/write requests based on the
MSR Cambridge Traces. To enhance the access efficiency
for intensive data flows, Memcached [41] module is
adopted as the end of data flows and caches data items in
RAM. In brief, each node has a client being the request
source and a Memcached being the destination. A metadata
server program is also implemented to handle the control
flows, whose modules include state monitoring, write desti-
nation decision and NN training.

TensorFlow-GPU [42] is used as the learning platform to
deploy DataBot+. Keras [43] is used as the framework for
NN implementation. Multilayer perceptron (MLP) [44] with
one kernel is used as the structure of NN. Determined
by (9), the NN has 2,809 features in the input layer and 36
features in the output layer. The NN is initialized based
on [34] to ensure the training convergence at a linear rate.
First, the dimensions of hidden layers should be at least the
minimum dimension of the input and output layers. There-
fore, three hidden layers are deployed, which have 2,000,
1,000 and 400 neutrons, respectively. Then, the weight
matrices are initialized following the random Gaussian dis-
tribution with zero means. In order to mitigate hotspots
with “pseudo” write, the time length f is set to 30 s.

Performance Baselines. In order to evaluate the perfor-
mance of DataBot+, four baselines HASH, commonIP, Sin-
bad, and DataBot are investigated. HASH hashes data items
to storage nodes for load-balancing, which has been widely
used in the current distributed storage systems, such as
HDFS [33] and Cassandra [45]. commonIP [19] places data
items to the IP address that requests them the most. As an
online solution, Sinbad [18] leverages the network flexibility
to avoid congested links. Therefore, the network hotspots
can be eased in replica placement during data writes. Data-
Bot [1] was proposed in the conference version of our paper
without considering the influence of data analytical latency.

5.2 Experiment Results

To start with, the read-optimized scenario (weight v ¼ 0:2
and replica k ¼ 3) is evaluated with the running time of
3,000 s. According to the evaluation results, 3,000 s is a long
enough period to obtain a steady performance improve-
ment ratio. The constant c in the reward function is set to 5.
The latest R ¼ 2; 000 tuples are captured in the replay mem-
ory and trained with jI j ¼ 6 epochs and jBj ¼ 300 batch

size. Each round of training needs 8.498 s on average before
the updated weight vector uuþ is transferred to the decision
NN in the production system. This means that without the
asynchronous implementation, the NN training will intro-
duce extra 8.498 s of latency to the data write requests,
which is undesirable for data center applications. This dem-
onstrates the benefits of the asynchronous implementation.

Fig. 8a illustrates the average reward per data placement
decision. In the beginning, the read/write latencies decrease
as Memcached should be warmed up with data items.
Hence, the average rewards of Sinbad, commonIP and
HASH increase for the first hundreds of seconds, and
remain fairly stable then. In comparison with the heuristic
solution, DataBot+ and DataBot learn better data placement
policies through trials and feedback continuously. The aver-
age reward is in an increasing trend with the learning-based
process. After multiple rounds of training for convergence,
the performance improvement ratio with DataBot+ and
DataBot becomes stable after 1,000 s.

Figs. 8b and 8c show the average read/write latencies
measured in every 200 s of the experimental period. HASH
can be intuitively treated as random storage location selec-
tion regardless of the user request patterns or network con-
ditions. Therefore, for the last 1,000 s, HASH incurs the
highest read/write latencies at about 201.0 and 249.9 ms,
respectively. commonIP places the data to the storage serv-
ers which request them the most. However, with the more
queuing delay caused by the biased distribution of data
requests among servers, the average read/write latencies
are 175.6 and 226.2 ms, respectively. Sinbad places the data
to the server with low occupancy links with the lowest write
latency 179.6 ms. However, the following data read is
neglected with the read latency of 172.4 ms.

With the learning process for a better placement policy,
DataBot+ and DataBot achieve lower read latencies than
HASH, commonIP, and Sinbad. As our previous work,
DataBot treats all data items equally to reduce the average
read/write latencies to 156.8 and 211.3 ms, respectively. In
contrast, as shown in Table 1, DataBot+ tends to reduce the
data movement latency of the data item with a short analyti-
cal latency. All data items are divided into 5 different
groups according to the data analytical latencies. Without
considering the analytical latency, the average read/write
latencies achieved by HASH, commonIP, and DataBot are
barely the same for all data groups. According to (10), with
DataBot+, data items with shorter analytical durations are
assigned with higher priorities to reduce the read latency.

Fig. 8. Read-optimized scenario v ¼ 0:2 with replica k ¼ 3.

LIU ET AL.: A LEARNING-BASED DATA PLACEMENT FRAMEWORK FOR LOW LATENCY IN DATA CENTER NETWORKS 153

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

Data items with long analytical latencies pay more attention
to reduce the write latency by selecting a server with fewer
data requests as the write location. In this way, the overall
network congestion can be eased, which also benefits the
read/write latency reduction of other data items with short
analytical latency. Specifically, as shown in Fig. 9, for data
items with analytical latency ranging from 50 to 200 ms, the
user-experienced latency of data read and analytics can be
reduced the most with DataBot+ (up to 23.8 percent). Fur-
thermore, compared with DataBot, DataBot+ periodically
issues “pseudo” write operations to mitigate hotspots. The
average read/write latencies of all data items can be
reduced to 141.5 and 193.9 ms, respectively.

Furthermore, as shown in Fig. 8, the performance shows
some variance due to 1) the fluctuations of the user request
patterns, and 2) the needed exploration with the �-greedy
method. The current data placement decisions may not
always yield the optimal data read/write latencies due to
the dynamic user requests and the exploration process. The
zigzag range becomes smaller with the learning process,
showing its converging adaptivity.

5.3 Parameter Impacts

In order to fully evaluate the performance of DataBot+, sev-
eral factors which may affect the data placement process are
also considered. Compared with the worst performance
obtained by HASH, Figs. 10 and 11 show the percentage of
latency reduction for data items with short analytical
latency (ranging from 50 to 200 ms).

Write Weight v. Figs. 10a and 11a illustrate the impact of
write weight v. The average read/write latencies with
HASH, commonIP, and Sinbad remain roughly stable as v

is not considered in the heuristic solutions. When v

increases from 0 to 1.0, the priority of write requests with
becomes higher and higher for DataBot+ and DataBot. With

DataBot+, the average write latency is decreased by 6.72
percent (from 202.3 to 188.7 ms), while the read latency is
increased by 37.42 percent (from 126.4 to 173.7 ms). For the
read-optimized scenario (v ¼ 0), compared with HASH, the
user-experienced latency of data read and analytics with
DataBot+, DataBot, Sinbad, and commonIP can be reduced
by 24.94, 16.9, 9.4, and 8.32 percent, respectively. For the
write-optimized scenario (v ¼ 1:0), compared with HASH,
the write latency can be reduced by 24.5, 23.79, 28.13, and
9.48 percent for DataBot+, DataBot, Sinbad, and commonIP,
respectively.

Number of Replicas k. Data replication can enhance the
reliability, accessibility, and fault-tolerance of the data ser-
vice. When the replica number is increased from 1 to 7, the
network congestion due to read requests can be eased with
more options to access needed data. The average read
latency of DataBot+ is decreased from 151.2 to 103.6 ms.

Data writes are synchronous to provide strong consis-
tency in this work. Once a data item is updated, its storage
node acts as the source to synchronize the updated data
with all nodes having data replicas. The write latency is
increased from 195.3 to 218.9 ms as the data item must be
written into k different locations with more data write flows.
In future work, the asynchronous write model will be inves-
tigated to choose the relay nodes among all storage nodes,
reducing the data write latency. Figs. 10b and 11b illustrate
that under the replication setting, DataBot+ can choose bet-
ter storage locations than other schemes with lower data
service latencies.

Constant c. As shown in Fig. 3, for a data item with the
same analytical latency, the importance of read request
in (11) goes up with the increase of c. This means that a
larger c indicates a higher priority of read requests but with
less concern for write requests. When c is increased from 1
to 50, the average read latency with DataBot+ is decreased
from 145.5 to 123.5 ms, while the write latency is increased
from 191.2 to 201.9 ms. In contrast, the read/write latencies
with DataBot, Sinbad, commonIP, and HASH keep stable
without considering c. As shown in Fig. 10c, with the
increase of c, DataBot+ achieves more and more user-expe-
rienced latency reduction for the data read and analytical
operation. At the same time, the reduction of data write
latency will be decreased.

Replay Memory Size Rj j. Fig. 12 illustrates the impact of
replay memory size Rj j. When Rj j is increased from 1,000 to
2,000, the learning system can approximate the optimal
solution more precisely with more tuples. The average
read/write latencies are decreased by 25 and 16.6 percent,
respectively. In the meantime, the training latency is
increased from 7.117 to 8.498 s.

TABLE 1
Average Data Read Latencies in Different Analytical Latency Intervals (ms)

Interval of analytical latency 50
 200 200
 400 400
 800 800
 1400 1400
 1
Average analytical latency 95.6 277.3 534.5 1,059.3 15,628.3
HASH 200.2 199.0 200.5 202.5 202.5
commonIP 175.6 172.5 175.4 179.0 175.3
Sinbad 172.2 173.1 172.9 173.8 171.4
DataBot 155.2 154.3 156.9 157.3 155.4
DataBot+ 129.8 141.8 143.6 144.2 149.6

Fig. 9. Percentage of user-experienced latency reduction when com-
pared with the worst performance obtained by HASH in different analyti-
cal latency intervals.

154 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

When Rj j is further increased from 2,000 to 3,000, the
training latency is increased rapidly from 8.498 to 11.533
s. The adaptability of the learning system to network
dynamics decreases accordingly. The average read/write
latencies are increased by 7.2 and 6.4 percent,
respectively.

Number of Training Epochs jI j. The NN training and the
resultant performance of data placement are influenced by
the number of training epochs. Fig. 13 illustrates the
change of the accumulated reward with the variation of
jI j. When jI j is increased from 2 to 6, the accumulated
reward increases because more rounds of training pro-
cesses lower the difference between the expected reward
of learning and the output of NN. Nevertheless, when jIj
is set to 8, performance degradation can be observed due
to over-fitting. During the training process, even though
the loss function can be further reduced with more train-
ing rounds, the obtained model may lose its generalization

capability for the future samples. Therefore, jI j is set to 6
in the experiments.

Batch Size jBj. The batch size determines how frequently
the weight vector u is updated during the training process.
As can be seen in Fig. 14, when jBj is set to 300, the highest
accumulated reward can be achieved due to the same rea-
son above. Figs. 13 and 14 suggest that a careful selection of
the training parameters can help to improve the perfor-
mance of the learning-based system. With these discoveries,
we are interested in finding a more systematic way to prop-
erly set and fine-tune the parameters and to avoid over-fit-
ting in the follow-up work.

6 CONCLUSION AND FUTURE WORK

In order to handle the uncertainties of the dynamic system,
this paper proposes a novel learning-based data placement
framework DataBot+, to automatically learn the optimal

Fig. 10. Percentage of read and analytical latency reduction when compared with the worst performance obtained by HASH for data items with short
analytical latency (ranging from 50 to 200 ms).

Fig. 11. Percentage of write latency reduction when compared with the worst performance obtained by HASH for data items with short analytical
latency (ranging from 50 to 200 ms).

Fig. 12. Impact of replay memory size Rj j. Fig. 13. Impact of epoch number jIj.

LIU ET AL.: A LEARNING-BASED DATA PLACEMENT FRAMEWORK FOR LOW LATENCY IN DATA CENTER NETWORKS 155

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

data placement policies. The NN is utilized to estimate the
near-future latency by training the weight vector with the
Q-values, thus avoiding the complexity of the huge state
space and speeding up the convergence to the solution.
Data items with short analytical latencies are more sensitive
to the variation of the data movement latency. They are
assigned with higher priorities to maximize the reduction of
the user-experienced service latency. Furthermore, two
asynchronous components, i.e., the online decision making
and offline training, are integrated seamlessly to ensure that
no extra delays will be introduced to handle the intensive
data flows. Performance evaluation demonstrates that the
user-experienced service latencies are reduced when com-
pared with the state-of-the-art solutions. For the scalability
in future work, the distributed RL solutions can be explored
to further speed up the convergence of the learning process
in the data placement problem, with no need of aggregating
raw data to a centralized metadata server for training.

ACKNOWLEDGMENTS

The authors would like to acknowledge that this work was
partially supported by National Natural Science Foundation
of China (Grant Nos. 61672537, 61672539 and 61873353),
China Postdoctoral Science Foundation, and in part by
NSERC, CFI and BCKDF. A preliminary version of this
paper appears at IEEE LCN’18 [1].

REFERENCES

[1] K. Liu, J. Wang, Z. Liao, B. Yu, and J. Pan, “Learning-based adap-
tive data placement for low latency in data center networks,” in
Proc. IEEE 43rd Conf. Local Comput. Netw., 2018, pp. 142–149.

[2] Y. Mansouri, A. N. Toosi, and R. Buyya, “Data storage manage-
ment in cloud environments: Taxonomy, survey, and future
directions,” ACM Comput. Surveys, vol. 50, no. 6, pp. 1–51, 2018.

[3] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data analy-
tics,” in Proc. ACM Conf. Special Interest Group Data Commun.,
2015, pp. 421–434.

[4] M. Y. Eltabakh, Y. Tian, F. €Ozcan, R. Gemulla, A. Krettek, and
J.McPherson, “CoHadoop: Flexible data placement and its exploita-
tion in Hadoop,” Proc. VLDB Endowment, vol. 4, no. 9, pp. 575–585,
2011.

[5] Y. Xiang, T. Lan, V. Aggarwal, and Y. F. R. Chen, “Joint latency
and cost optimization for erasure-coded data center storage,”
IEEE/ACM Trans. Netw., vol. 24, no. 4, pp. 2443–2457, Aug. 2016.

[6] X. Ren, P. London, J. Ziani, and A. Wierman, “Datum: Managing
data purchasing and data placement in a geo-distributed data
market,” IEEE/ACM Trans. Netw., vol. 26, no. 2, pp. 893–905, Apr.
2018.

[7] B. Yu and J. Pan, “A framework of hypergraph-based data place-
ment among geo-distributed datacenters,” IEEE Trans. Serv. Com-
put., in press, 2017.

[8] B. Yu and J. Pan, “Sketch-based data placement among geo-
distributed datacenters for cloud storages,” in Proc. IEEE INFO-
COM, 2016, pp. 1–9.

[9] Y. Hu, Y. Wang, B. Liu, D. Niu, and C. Huang, “Latency reduction
and load balancing in coded storage systems,” in Proc. ACM
Symp. Cloud Comput., 2017, pp. 365–377.

[10] Y. Fan, H. Ding, L. Wang, and X. Yuan, “Green latency-aware data
placement in data centers,”Comput. Netw., vol. 110, pp. 46–57, 2016.

[11] Latency Definition. 2017. [Online]: https://techterms.com/
definition/latency

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,”Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[13] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis, “Dremel: Interactive analysis of web-
scale datasets,” Commun. ACM, vol. 54, no. 6, pp. 114–123, 2011.

[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proc. 9th USENIX Conf. Netw. Syst. Des. Implemen-
tation, 2012, pp. 15–28.

[15] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[16] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and
M. Caesar, “Network-aware scheduling for data-parallel jobs:
Plan when you can,” in Proc. ACM Conf. Special Interest Group Data
Commun., 2015, pp. 407–420.

[17] M. Steiner, B. G. Gaglianello, V. Gurbani, V. Hilt, W. D. Roome,
M. Scharf, and T. Voith, “Network-aware service placement in a
distributed cloud environment,” in Proc. ACM SIGCOMM Appl.
Technol. Archit. Protocols Comput. Commun., 2012, pp. 73–74.

[18] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint
flexibility in data-intensive clusters,” in Proc. ACM SIGCOMM,
2013, pp. 231–242.

[19] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and
H. Bhogan, “Volley: Automated data placement for geo-distrib-
uted cloud services,” in Proc. 7th USENIX Conf. Netw. Syst. Des.
Implementation, 2010, p. 2.

[20] L. Cui, J. Zhang, L. Yue, Y. Shi, H. Li, and D. Yuan, “A genetic
algorithm based data replica placement strategy for scientific
applications in clouds,” IEEE Trans. Services. Comput., vol. 11, no.
4, pp. 727–739, Jul./Aug. 2018.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with deep reinforce-
ment learning,” inProc. NIPSDeep Learn.Workshop, 2013, pp. 1–9.

[22] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” in Proc.
Int. Conf. Learn. Representations Workshop, 2017, pp. 1–5.

[23] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proc. 15th
ACMWorkshop Hot Topics Netw., 2016, pp. 50–56.

[24] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in Proc. 34th Int. Conf.
Mach. Learn., 2017, pp. 2430–2439.

[25] X. Nie, Y. Zhao, D. Pei, G. Chen, K. Sui, and J. Zhang, “Reducing
web latency through dynamically setting TCP initial window
with reinforcement learning,” in Proc. IEEE/ACM 26th Int. Symp.
Quality Serv., 2018, pp. 1–10.

[26] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic opti-
mization,” in Proc. Conf. ACM Special Interest Group Data Commun.,
2018, pp. 191–205.

[27] W. Xia, P. Zhao, Y. Wen, and H. Xie, “A survey on data center net-
working (DCN): Infrastructure and operations,” IEEE Commun.
Surveys Tuts., vol. 19, no. 1, pp. 640–656, Jan.–Mar. 2017.

[28] Q. Xu, R. V. Arumugam, K. L. Yong, and S. Mahadevan, “Efficient
and scalable metadata management in EB-scale file systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 11, pp. 2840–2850, Nov. 2014.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[30] C. Xu, K. Wang, P. Li, R. Xia, S. Guo, and M. Guo, “Renewable
energy-aware big data analytics in geo-distributed data centers with
reinforcement learning,” IEEE Trans. Netw. Sci. Eng., in press, 2018.

Fig. 14. Impact of batch size jBj.

156 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

https://techterms.com/definition/latency
https://techterms.com/definition/latency

[31] J. S. Hunter, “The exponentially weighted moving average,” J.
Quality Technol., vol. 18, no. 4, pp. 203–210, 1986.

[32] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“CONGA: Distributed congestion-aware load balancing for data-
centers,” inProc. ACMSIGCOMM, 2014, pp. 503–514.

[33] HDFS Architecture Guide. 2019. [Online]: https://hadoop.
apache.org/

[34] S. Arora, N. Cohen, N. Golowich, and W. Hu, “A convergence
analysis of gradient descent for deep linear neural networks,” in
Proc. Int. Conf. Learn. Representations, 2019, pp. 1–33.

[35] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Trans.
Storage, vol. 4, no. 3, pp. 1–23, 2008.

[36] P. Delgado, F. Dinu, A. M. Kermarrec, and W. Zwaenepoel,
“Hawk: Hybrid datacenter scheduling,” in Proc. USENIX Conf.
Usenix Annu. Tech. Conf., 2015, pp. 499–510.

[37] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail: Avoiding
long tails in the cloud,” in Proc. 10th USENIX Conf. Netw. Syst.
Des. Implementation, 2013, pp. 329–341.

[38] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and
C. Yan, “Speeding up distributed request-response workflows,”
in Proc. ACM SIGCOMM, 2013, pp. 219–230.

[39] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, low latency scheduling,” in Proc. 24th ACM Symp.
Operating Syst. Principles, 2013, pp. 69–84.

[40] Mininet. 2019. [Online]: http://mininet.org/
[41] Memcached. 2019. [Online]: http://memcached.org/
[42] TensorFlow, 2019. [Online]. Available: https://www.tensorflow.org
[43] Keras, 2019. [Online]. Available: http://keras.io/
[44] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1,
pp. 1929–1958, 2014.

[45] Cassandra. 2019. [Online]: http://cassandra.apache.org/

Kaiyang Liu (S’14) received the PhD degree
from the School of Information Science and Engi-
neering, Central South University, in 2019. Dur-
ing 2016–2018, he was a research assistant with
the University of Victoria, Canada, with Prof.
Jianping Pan. His current research areas include
networked systems, distributed systems and
cloud/edge computing, with a special focus on
the analysis and optimization of the data-inten-
sive services. One of his papers is one of the
three IEEE LCN 2018 Best Paper Award candi-
dates. He is a student member of the IEEE.

Jun Peng (M’08) received the BS degree from
Xiangtan University, Xiangtan, China, in 1987,
the MSc degree from the National University of
Defense Technology, Changsha, China, in 1990,
and the PhD degree from Central South Univer-
sity, Changsha, China, in 2005. In April 1990, she
joined the Central South University. From 2006 to
2007, she was with the School of Electrical and
Computer Science, University of Central Florida,
as a visiting scholar. She is a professor with the
School of Computer Science and Engineering,

Central South of University, China. Her research interests include coop-
erative control, cloud computing, and wireless communications. She is a
member of the IEEE.

Jingrong Wang (S’18) received the BS degrees
from the School of Electronic and Information
Technology, Beijing Jiaotong University, in 2017.
She is currently working toward theMSc degree in
the Department of Computer Science, University
of Victoria. Her research interests cover wireless
communications, mobile edge computing, and
machine learning. She is a coauthor of one of the
three IEEE LCN 2018 Best Paper Award candi-
dates. She is a student member of the IEEE.

Boyang Yu received the bachelor’s and master’s
degrees in computer science from Nankai Univer-
sity, China, in 2006 and 2009, respectively, and
the PhD degree from the Department of Com-
puter Science, University of Victoria, Canada, in
2016. His current research areas include net-
worked systems, distributed systems and cloud
computing, with special focus on the analysis and
optimization in the data-intensive services. He is
a student member of the IEEE.

Zhuofan Liao received the PhD degree in com-
puter science fromCentral SouthUniversity, China,
in 2012. Supported by the China Scholarship
Council, she was a visiting scholar with the Univer-
sity of Victoria, from 2017 to 2018. She is currently
an assistant professor with the School of Computer
and Communication Engineering, Changsha Uni-
versity of Science and Technology, China. Her
research interests include wireless networks opti-
mization, big data, and edge computing.

Zhiwu Huang (M’08) received the BS degree in
industrial automation from Xiangtan University,
Xiangtan, China, in 1987, the MS degree in
industrial automation from the Department of
Automatic Control, University of Science and
Technology Beijing, Beijing, China, in 1989, and
the PhD degree in control theory and control
engineering from Central South University,
Changsha, China, in 2006. In October 1994, he
joined the Central South University. From 2008 to
2009, he was with the School of Computer Sci-

ence and Electronic Engineering, University of Essex, United Kingdom,
as a visiting scholar. He is currently a professor with the School of Auto-
mation, Central South University, China. His research interests include
fault diagnostic technique and cooperative control. He is a member of
the IEEE.

Jianping Pan (S’96-M’98-SM’08) received the
bachelor’s and PhD degrees in computer science
from Southeast University, Nanjing, Jiangsu,
China. He is currently a professor of computer
science with the University of Victoria, Victoria,
British Columbia, Canada. He did his postdoc-
toral research with the University of Waterloo,
Waterloo, Ontario, Canada. He also worked with
Fujitsu Labs and NTT Labs. His area of speciali-
zation is computer networks and distributed sys-
tems, and his current research interests include

protocols for advanced networking, performance analysis of networked
systems, and applied network security. He received the IEICE Best
Paper Award in 2009, the Telecommunications Advancement
Foundation’s Telesys Award in 2010, the WCSP 2011 Best Paper
Award, the IEEE Globecom 2011 Best Paper Award, the JSPS Invitation
Fellowship in 2012, the IEEE ICC 2013 Best Paper Award, and the
NSERC DAS Award in 2016, is a coauthor of one of the three IEEE LCN
2018 Best Paper Award candidates, and has been serving on the techni-
cal program committees of major computer communications and net-
working conferences including IEEE INFOCOM, ICC, Globecom,
WCNC and CCNC. He was the Ad Hoc and Sensor Networking Sympo-
sium co-chair of IEEE Globecom 2012 and an associate editor of the
IEEE Transactions on Vehicular Technology. He is a senior member of
the ACM and IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LIU ET AL.: A LEARNING-BASED DATA PLACEMENT FRAMEWORK FOR LOW LATENCY IN DATA CENTER NETWORKS 157

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on March 11,2022 at 19:35:03 UTC from IEEE Xplore. Restrictions apply.

https://hadoop.apache.org/
https://hadoop.apache.org/
http://mininet.org/
http://memcached.org/
https://www.tensorflow.org
http://keras.io/
http://cassandra.apache.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

