
Learning-based Adaptive Data Placement for

Low Latency in Data Center Networks

Kaiyang Liu, Jingrong Wang, Zhuofan Liao,

Boyang Yu, Jianping Pan

1

Data Analytics Services

2

Computing moduleStorage module
Data center networks

Storage module

Data items

➢Data-intensive applications

• Data items need to be moved frequently between storage nodes

• This introduces increased and changing data access latency

➢Data placement problem arises

➢Data movement latency

• Network latency = Processing + Queuing + Transmission + Propagation latency

• Different factors contribute to the latency

Data Placement

➢Data storage

• Storage locations affect the finish time of the distributed computation tasks

• Main bottleneck: data movement latency [1]

• Amazon and Google reported that a slight increase in delay will lead to

observable fewer user accesses

Sender Receiver

3[1] M.Y. Eltabakh, et al., “CoHadoop: Flexible data placement and its exploitation in Hadoop,” in Proc. VLDB Endow., 2011.

➢Limitations: not flexible enough to deal with a dynamic

environment

• Different latency factors could be time-variant

• Many uncertainties

• Unreliable network links, variable user request patterns, and evolving system

configurations

Related Work

➢Existing research efforts [2]—[5]

• Analyzing the factors that may affect the network latency

• Hand-crafted design of optimization models

4

[2] Y. Xiang, et al., “Joint latency and cost optimization for erasure-coded data center storage,” IEEE/ACM Trans. Netw., 2016.

[3] X. Ren, et al., “Datum: Managing data purchasing and data placement in a geo-distributed data market,” IEEE/ACM Trans. Netw., 2018.

[4] B. Yu, et al., “A framework of hypergraph-based data placement among geo-distributed datacenters,” IEEE Trans. Serv. Comput., 2017.

[5] Y. Hu, et al., “Latency reduction and load balancing in coded storage systems,” in Proc. of ACM SoCC, 2017.

Key Questions

➢Data placement problem: how to choose the storage locations of

data items for low latency?

➢Challenges

• Adaptability: online schemes to deal with the network uncertainties

• Easy Implementation

• Low overhead

• No need to modify the existing storage architecture

5

DataBot: A Learning-based Solution

➢Design overview

6

Dynamic environments

Request patterns

Network conditions
Read/write

latency

Update data

placement

Neural networks

Q-learning

State

Action Reward

Q: States(S) × Action(A) = Reward(R)

Q-learning based Data Placement

7

➢Data placement can be treated as a finite Markov Decision

Process (FMDP)

• The number of storage nodes is finite

• Each action of data placement is independent

• The performance of placement only depends on the current states and

decisions

➢The model-free Q-learning can find an optimal action

selection policy for any given FMDP [6]

[6] L.P. Kaelbling, et al., “Reinforcement learning: A survey,” J. Artif. Intell. Res., 1996.

Our Contributions

8

• Numerous data items

• Many servers (storage

locations)

- Large state-action space

- Slow convergence

Curse of

Dimensionality

• Recurrent training and

model updating

• Time consuming

- No instantaneous decisions

- Long access latency

Extra

Overheads

➢Solutions to address the limitations of conventional Q-learning

+ Q-function design and

approximation

+ Efficient asynchronous

implementation

Exponentially Weighted Moving Average (EWMA) mechanism [7]:

Q-Function Design (1)

9

➢States (S)

a) Network conditions:

Average read/write latencies Set of servers

[R] [W]{ , , , }ij ijL L i j 

[R/W] [R/W](1)ij l l ijL l L = + −

Measured latency for each data movement Discount factor

[7] J.S. Hunter, “The exponentially weighted moving average,” J. Qual. Technol., 1986.

Benefits of EWMA: it only needs O(1) space for latency estimation

Discounting Rate Estimator (DRE) method [8]

• Maintains a counter for each item

• Increases with every read/write operation

• Decreases periodically

Q-Function Design (2)

10

➢States (S)

b) Request Patterns:

Read/write rates to data m from i Total read/write rates from server i

[R] [W] [R] [W]{ , , , , }im im i iF F F F i 

[8] M. Alizadeh, et al., “Conga: Distributed congestion-aware load balancing for datacenters,” in Proc. of ACM SIGCOMM, 2014.

Benefits of DRE: 1) it reacts quickly to the changes, and 2) only

needs O(1) space

Q-Function Design (3)

11

➢States (S)

c) Source location: 0-1 vector

The size of state s will be: |s| = 2𝑁2 + 5N = O(𝑁2)

• The number of data items will not affect the deployment complexity

➢Actions (A): 0-1 vector (storage locations)

➢Rewards (R):

The measured read/write latencies are used as the reward

[W] [R]

1 1 1
(1)

| |
 



=  + −  t

p p

r
l l

Tradeoff parameter # of read operations between two write operations

Number of servers

Q-function Approximation

➢Neural networks (NN)

• Learn to output the expected rewards of data placement actions

• Lower the scale of the state space (number of servers)

12

𝐿𝑖𝑗
ΤR W

෨𝐹𝑖
R/W

𝐹𝑖
ΤR W

θ

…
…

… …

Input layer Hidden layers Output layer

Network

conditions

Request

patterns

Write

sources
{0,1} …

…
…

…

…
…

…
…

…

…
…

…

…

F(s,a,θ)

Neurons

System Architecture

➢Data storage architecture

• DataBot is implemented in the metadata server

13

➢Metadata server

• Manages the storage locations of data items, e.g., using hashtag

• Captures the logs of the read/write requests: (TS, R/W, Src, Dst, Lat)

Data center networks

Metadata server

…

Storage servers with computation function

State monitor

Reinforcement

learning

Storage location

System Architecture

➢Data storage architecture

• DataBot is implemented in the metadata server

14

➢Metadata server

• Manages the storage locations of data items, e.g., using hashtag

• Captures the logs of the read/write requests: (TS, R/W, Src, Dst, Lat)

Data center networks

Metadata server

…

Storage servers with computation function

State monitor

Reinforcement

learning

Storage location

Query storage

locations

System Architecture

➢Data storage architecture

• DataBot is implemented in the metadata server

15

➢Metadata server

• Manages the storage locations of data items, e.g., using hashtag

• Captures the logs of the read/write requests: (TS, R/W, Src, Dst, Lat)

Data center networks

Metadata server

…

Storage servers with computation function

State monitor

Reinforcement

learning

Storage location

Read data

Asynchronous Implementation (1)

➢Data storage architecture

• DataBot is implemented in the metadata server

16

➢Metadata server

• Manages the storage locations of data items, e.g., using hashtag

• Captures the logs of the read/write requests: (TS, R/W, Src, Dst, Lat)

Data center networks

Metadata server

…

Storage servers with computation function

State monitor

Reinforcement

learning

Storage location

Report

service logs

Asynchronous Implementation

17

➢Production system: decision NN

• Input: state ; Output: expected reward

• ε-greedy method: with probability ε to select the action

that maximizes the output value

• A tuple is stored for each request

➢Training system: training NN

• Tuples for a period Replay memory R for training

• Mini-batch stochastic gradient descent (SGD) [9]:

training weight vector

• Batch: all tuples in R are partitioned into mini-batches

• Epoch: mini-batches are trained with multiple iterations

• Weight update:

θ+

Decision NN

Write handler

Read handler

Storage

location

Production

θ

Training

Network

Latency

Request

Replay memory

Training NN

Read Write

1 2 3 4 N-1 N

State monitoring

Storage servers

Metadata server

…
(, ,)t tas ts

ta

1(, , ,) += t t t ta rs s

+

+ 
[9] V. Mnih, et al., “Human-level control through deep reinforcement learning,” Nature, 2015.

Performance Evaluation

18

Evaluation Setup: Traces

➢ MSR Cambridge Traces [10]

• I/O traces of an enterprise data center

• Hostname, request type (read/write), and

timestamp

• Request distribution is biased among 36

storage servers

➢ Limitation: do not specify the detailed

data item for each read/write request

➢ Assumption

• Number of data items: 10,000

• The request rates of data items follow a Zipf

distribution among servers Arrival rates of the read/write requests

[10] D. Narayanan, et al., “Write off-loading: Practical power management for enterprise storage,” ACM Trans. Storage, 2008. 19

Evaluation Setup: Scenarios (1)

➢ Data center network emulation: Mininet

• Representative network topology: Fat-Tree [11]; Link capacity: 1 Gbps

• Default data block size: 64 MB [12]

[11] M. Al-Fares, et al., “ A scalable, commodity data center network architecture,” in Proc. of ACM SIGCOMM, 2008.

[12] “HDFS Architecture Guide.” [Online]: https://hadoop.apache.org/

Core switches

Servers

Edge switches

Aggregation switches

20

Evaluation Setup: Scenarios (2)

➢ Client program: Initiates the read/write requests

• Memcached: the end of data flows for data caching in RAM

➢ Metadata server program

• State monitoring

• Write destination decision

• NN training: Multilayer perceptron with one kernel

➢ Performance baselines

• HASH [11] hashes data to servers for load-balancing

• CommonIP [12] places data as close as possible to the IP address that most commonly

accesses the data under the constraint of storage capacity

[11] “HDFS Architecture Guide.” [Online]: https://hadoop.apache.org/

[12] S. Agarwal, et al., “Volley: Automated data placement for geo-distributed cloud services,” in Proc. of USENIX NSDI, 2010. 21

Results: Read optimized

➢Read optimized: write weight ω = 0.2

22

(b) Average read latency

Results: Other Factors (1)

➢Parameter impacts: write weight and number of replicas

23

Results: Other Factors (2)

➢Parameter impacts: number of training epochs and batch size

24

I = 2

I = 4

I = 8

I = 6

|b| = 30

|b| = 100

|b| = 500

|b| = 300

Conclusions

➢DataBot automatically learns the optimal data placement

policies to handle the system uncertainties
• With no future information about the dynamics

➢Neural networks achieve a quick approximation when

combined with Q-learning

➢Asynchronous implementation
• Online decision making and offline training

25

Thanks
Happy to answer your questions

26

Backup Slides

27

Neural Networks

28

➢Structure of NN
• Multilayer perceptron (MLP) with one kernel

• Input layer: 1,476 features; Output layer: 36 features

• Two hidden layers: 1,000 and 600 features

➢Weight vector training
• Traditional back propagation method

➢ Implementation based on popular learning frameworks

• Keras deep learning library [14] (with TensorFlow as backend)

[14] “Keras: Deep learning library” [Online]. Available at: https://keras.io/.

Scalability

➢How to improve the scalability when the serves are

deployed on a large scale?
• Hundreds or thousands of servers

➢Our solution in the future work

Distributed learning mechanism
• Multiple workers run in parallel to train the partitions of the input dataset

• Works update shared model parameters for training

• The learning process can be sped up with no need of aggregating raw

data to a centralized metadata server.

29

