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Abstract—In this paper, we study the open problems raised
by Karp et al. in FOCS 2000, where the authors formulated
the end-to-end congestion control as a repeated game between a
flow and an adversary. They mentioned several open problems
including finding equilibria in a more realistic game model for the
situation where the available bandwidth is a result of competition
among multiple flows instead of being chosen by an adversary,
and designing the randomized algorithm to deal with the dynamic
change of network bandwidth. Although there have been many
game-theoretic works for congestion control, to the best of our
knowledge, the above two problems still remain unsolved over
the past decades. We take a step further to address the above
two problems by first modeling the end-to-end congestion control
as a repeated unknown general-sum game among multiple flows
with bandit feedback. Each flow is a player in this unknown
game, making decisions on how many packets to send. The
throughput for each flow depends on all the flows’ rates and
the network capacity. The unknown setting and bandit feedback
capture the essence of end-to-end congestion control: each flow
has no information about others (e.g., the number, actions, and
packet loss of other flows), and only receives limited information
for its chosen action. Then, we propose a randomized no-regret
learning algorithm for each flow called LUC based on a swap-
regret-minimizing technique. We prove that LUC can guarantee
a polynomial-time convergence rate to correlated equilibria in
the multi-player setting. Finally, we have implemented LUC
through the Linux kernel, and conducted extensive fairness-
related experiments in Mininet and trace-driven experiments
with Pantheon to show that each flow with LUC can fairly share
the bandwidth in homogeneous scenarios, and be competitive but
TCP-friendly in heterogeneous scenarios.

I. INTRODUCTION

The study of congestion control in computer networks

has kept prosperous due to its intrinsic complexity in the

distributed control of flows with limited information. The

modern Internet design philosophy of end-to-end delivery

results in the decision making at the end-host, forming a

strategic environment for resource competition in networks.

Studying such a strategic environment is the core of the

algorithmic game theory, and thus it plays an important role

in understanding the nature of the network congestion and an-

alyzing the performance of congestion control algorithms [1].

Although many game-theoretic works have been done for

congestion control, most of them are focused on analyzing

∗Portions of this work were completed while the author was a postdoctoral
fellow at the University of Victoria, BC, Canada.

the existing TCP congestion control algorithms or router

policies (e.g., drop-tail) [2]–[12]. Those works usually assume

game models with all information available, e.g., the number

of flows, the strategies, and the router policies are known a

priori. Such game models work well when designing router

policies, as a router has information about incoming flows.

However, when it comes to the design of end-to-end conges-

tion control algorithms, such game models fail to capture the

reality where each flow has limited information about others

and can only observe the outcome for its chosen congestion
window (cwnd) or sending rate (srate).

The very first game model for designing end-to-end con-

gestion control algorithms is proposed by Karp et al. [13]

in FOCS 2000 where the authors formulated the end-to-end

congestion control as a repeated game between a flow and

an adversary. In each round of the game, the flow sends a

cwnd of packets to the network, and the adversary chooses

available network bandwidth for the flow but the flow cannot

observe it. Then by the end of the round, the flow will

observe a utility determined by the number of sent packets

and the available network bandwidth. Such a model is simple

yet effective to capture the interaction between one flow

and the network. However, available bandwidth is simply

assumed to be dynamically chosen by an adversary, while

in reality, the dynamic of available bandwidth is a result of

competition among multiple flows. Thus, the author of [13]

proposed several open problems including finding equilibria

in a more realistic game model considering the competition

among multiple flows, and designing randomized algorithms

to deal with the dynamic available bandwidth.

Over the past decades, the above open problems still re-

main unsolved. Although there are many works in recent

years that adopt online learning techniques to design end-to-

end congestion control algorithms [14]–[19], they are either

explicitly or implicitly based on the simple model proposed

in [13]. The PCC-Vivace [20] algorithm, on the other hand,

implicitly formulates the end-to-end congestion control as a

concave game based on the theoretical results in [21]: when

minimizing the so-called external regret in concave games for

each player, all players will reach Nash equilibria. Albeit con-

cave games capture some game-theoretic essence of the end-

to-end congestion control, the assumption about the concave
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utility function is quite strong. In addition, external regret is a

performance metric measuring the maximum performance loss

between an online learning algorithm and a set of competitors

always playing a fixed action, but even the best fixed action

may not be the optimal solution for the game. Thus, a more

realistic game model and learning algorithms are needed to

address the open problems.

We take a step further for the open problems by formulating

end-to-end congestion control as learning for repeated un-

known general-sum games with bandit feedback. In each round

of the unknown general-sum games, or equivalently, black-box

games [22], each flow needs to make decisions independently
in a distributed manner with limited information. The limited

information means that each flow may not know the number

of all the flows in the same network, and each flow cannot

observe the information (e.g., the congestion window and

packet loss) about other flows, or communicate with other

flows. The bandit feedback means that each flow can only

know its own utility (e.g., throughput) for its chosen cwnd or

srate. The objective of each flow is to accumulate as many

utilities as possible, and all the flows converge to equilibria.

Instead of Nash equilibria, we consider a generalization of

Nash equilibrium called the correlated equilibrium [23]. The

correlated equilibria usually require a central controller to give

recommendations to the agents involved in the game so that

the system can achieve maximum efficiency. However, in the

unknown games, we do not assume that each flow can obtain

any recommendations. Is there any strategy if played by all

the flows can achieve the correlated equilibria as if there were

a central controller?

This problem is very challenging as flows are affecting

each other, and each flow with such limited information needs

to trade off between exploring (i.e., probing) the reward for

each cwnd (or srate) and exploiting the current knowledge

learned from the exploration to make the best decisions.

Motivated by the swap regret [24], [25], a generic perfor-

mance measure for online learning algorithms, we develop

a randomized algorithm called Learning for Unknown games
for Congestion Control (LUC) for each flow in the unknown

games with bandit feedback. We show that LUC is a no-

swap-regret learning algorithm, i.e., the time-averaged swap

regret vanishes asymptotically over time. The advantages of

minimizing swap regret are twofold. First, a no-swap-regret

learning algorithm is robust to a larger set of competitors (see

more discussions in Sec. III). Second, minimizing swap regret

is a computationally-efficient way to find a correlated equi-

librium (see Corollary 1). LUC is designed to be a building

block that can be used to design end-to-end congestion con-

trol algorithms that address the unknown games and achieve

correlated equilibria efficiently.

To sum up, the contributions of our work are as follows:

• We are the first in the literature to formulate the end-

to-end congestion control as repeated unknown general-

sum games with bandit feedback, which take a step

further to address the open problems raised in [13] by

capturing more game-theoretic essence of the end-to-end

congestion control in reality.

• We proposed a polynomial-time randomized algorithm

called LUC to address the unknown games, which

has a cumulative swap regret upper bounded by

O(Cn

√
T log(Cnδ−1)) with probability at least 1−δ for

any δ ∈ (0, 1), where Cn is the number of actions for flow

n and T is the total length of the game. Furthermore, the

LUC algorithm can achieve an ε-correlated equilibrium

in a polynomial number of rounds.

• Third, we implement LUC through the Linux kernel 5.4.0

based on the congestion control plane [26], a new API for

writing congestion control algorithms. We first perform

TCP fairness-related experiments in Mininet to compare

with the TCP CUBIC and TCP BBR version 2. Then

we perform experiments driven by U.S. cellular network

traces with Pantheon [27] with an additional comparison

to PCC-Vivace [20]. The experiment results show that

LUC is TCP-friendly and competitive, and can adapt to

dynamic network environments.

The rest of the paper is organized as follows. Sec. II reviews

related works. The problem settings are described in Sec. III.

The LUC algorithm is proposed in Sec. IV, with analytical

results presented in Sec. V. We show the throughput and

fairness-related experiments in Sec. VI. Sec. VII concludes

the paper. The detailed proofs of the swap-regret upper bound

are deferred to Appendix.

II. RELATED WORKS

In this section, we first give a detailed review of the game-

theoretic congestion control, and then briefly discuss recent

progresses in learning-based congestion control. Furthermore,

we will review equilibrium learning in game theory.

Game-theoretic Congestion Control: Game theory has

been extensively studied in congestion control, and there are

mainly two lines of research for game-theoretic congestion

control. One is focused on router-based congestion control,

which manages the incoming packets from different flows for a

router, and the other studies the end-to-end congestion control,

which decides how many packets to be sent at a time for each

flow.

For router-based congestion control, the main goal is to

analyze the existing TCP congestion control algorithms with

given router policies (e.g., drop-tail) or design new router

policies. The earliest work can be traced back to [28], which

gave game-theoretic implications of switching disciplines and

their relevance to congestion control. It was later followed by

the works of [2]–[10], where the independent data flows are

considered as selfish players in a game, and the mechanism

of the game is determined by the router policies. In such

games, both the router policies and the end-to-end congestion

control algorithms (i.e., the strategies of players) are known

a priori. Although the above works can be effective to design

and analyze router policies, they cannot provide an end-to-end

congestion control solution for data flows.
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The other line of research studies the design and analysis

of end-to-end congestion control algorithms from a game-

theoretic point of view. One of the earliest works is [13],

where the author modeled the congestion control problem as

a game between a flow and an adversary. In each round, a

flow selects an action (e.g., cwnd) and the adversary selects

a bandwidth for triggering penalties if congestion happens or

there is wasted bandwidth. By the end of that paper, they

raised several open questions including how to model a more

realistic case where the available bandwidth is a result of

the competition among flows instead of being chosen by the

adversary, and whether equilibria exist in such scenarios. Such

a multi-flow game problem is challenging, as each flow has

very limited information about other flows in the end-to-end

congestion control.

Later, in the work of [29], the author modeled the end-to-end

congestion control as a noncooperative game, and proved the

existence and uniqueness of Nash equilibrium with convexity

assumptions for utility functions. They also design gradient

algorithms to achieve the Nash equilibrium. However, the

gradient algorithm requires knowledge about the total number

of flows and the network capacity, which is not practical

in reality. To address this issue, the authors of [30] tried

to model the end-to-end congestion control as a Bayesian

game. Although each flow does not need to know the exact

information about other flows, a prior belief about others is

still required.

Some theoretical progress has been made in the work

of [20], where the authors designed PCC-Vivace based on

the theoretical work [21] for equilibrium learning in concave

games, i.e., the utility function for each flow is concave,

where the Nash equilibrium can be reached if each agent

plays an external-regret-minimizing algorithm. However, it is

not realistic to assume the utility for each flow must be a

concave function. On the other hand, unknown general-sum

games can well capture the game-theoretic nature of end-to-

end congestion control, as there are no unrealistic assumptions

for either the flows or the utility functions.

To the best of our knowledge, the open problem proposed

by [13] has still remained unsolved. We take a step further

by modeling the competition of multiple flows as a repeated

unknown general-sum game with bandit feedback for the first

time in literature and proposing a swap-regret-minimizing

algorithm to asymptotically achieve the correlated equilibria

that are more general than the well-known Nash equilibria.

Learning-based Congestion Control: Recent years have

witnessed a line of research work on congestion control based

on machine learning techniques. Remy [31] and Indigo [27]

are two representative works for offline-learning congestion

control algorithms. Such algorithms have limited adaptivity to

new situations in practice. Therefore, reinforcement learning
(RL) techniques have been introduced to congestion control

to alleviate such problems, such as QTCP [14], Aurora [15],

Eagle [16], Orca [17], MOCC [18] and Pareto [19]. However, a

certain amount of offline training is often needed for the above

RL models to guarantee an efficient and effective deployment.

Lightweight online learning techniques do not require a pre-

trained model. The typical example is PCC-Vivace [20], which

relies on online (convex) optimization to update the sending

rate. Although the above works share some similarities to the

equilibrium learning in our work, the common limitation of the

above learning-based algorithms is that they can only minimize

external regret, i.e., the maximum performance gap from the

set of competitors always playing a fixed action is bounded.

There are no theoretical guarantees for the convergence to

correlated equilibria.

Equilibrium Learning: The study of unknown game mod-

els (or the black-box games [22]) has a long history that can

be traced back to the fictitious play for the two-player zero-

sum games [32], [33]. However, it was not until the start

of this century that much progress has been made with the

development of online learning techniques [34], particularly

for games with specific structures. For example, the authors of

[35] studied the congestion game with bandit feedback, where

the author tried to minimize a Nash regret, which is a sum

of the maximal external regret among agents in each round.

A similar work of [36] studied a specific congestion game,

where each resource is equally shared among the agents who

choose it. Nevertheless, end-to-end congestion control is not

necessarily a congestion game, as one may not find a potential

function that is the essence of the congestion game. The

authors of [37] studied augmented games by utilizing com-

munications between agents. However, such a methodology

is not suitable for unknown games, as the agents in unknown

games do not know each other and will not communicate with

each other. There are many other equilibrium learning works

for some specific games, e.g., potential games [38]–[41], and

mean-field games [42]–[44]. As all their results require specific

game structures, they cannot be applied to unknown general-

sum games.

Regarding the learning for unknown general-sum games,

there are mainly two situations depending on the observability

of feedback. If the utility of an action can be observed

regardless of whether it is played or not, we call it the

full-information feedback [45]–[47], and if only the utility

of a played action can be observed, then it is the bandit
feedback. As in end-to-end congestion control, each flow can

only observe the feedback for its selected cwnd (or srate), we

will focus on learning for the bandit feedback.

The first work that addressed the unknown general-sum

game problem with bandit feedback is [48], where an

exponential-weight technique is proposed to minimize external

regret. However, it is shown in [34] that the external-regret-

minimizing algorithm can only converge to the set of Nash

equilibria for the two-person zero-sum game. It was later

proved in [21] that minimizing external regret can converge to

Nash equilibria for concave games. However, for end-to-end

congestion control, we cannot take for granted that the utility

function is concave. As we want to come up with a building

block that can be adapted to any congestion control algorithm,

we are more interested in unknown general-sum games, and

the correlated equilibrium can only be achieved if the internal
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regret can be minimized asymptotically. Since minimizing

the swap regret can also minimize both the external and

internal regret [24] and be more robust against a larger set

of competitors, we are motivated to address the unknown

games for end-to-end congestion control from the swap-regret

viewpoint, which is different from the Nash regret that is

prevalent in the equilibrium-learning literature.

III. MODEL AND PROBLEM FORMULATION

A. Unknown General-sum Game Model with Bandit Feedback

We consider a network of N flows competing for the same

resource (e.g., bandwidth) in the network, as shown in Fig. 1.

The congestion happens when the number of packets sent by

all flows is beyond the network capacity, and the overflowed

packets will be dropped according to a router policy (e.g.,

drop-tail). The competitive interaction between multiple flows

can be modeled by a repeated unknown general-sum game

involving N flows with the following two justifications that

are also widely used in the related works [3], [10].

1

Flow

2

N

Router Internet

Fig. 1: A network model for the unknown general-sum games.

First, the length of each round of the repeated game is

chosen appropriately such that all the flows can finish one

round of interaction in one round of the game, i.e., send a

cwnd of packets and receive ACKs for these packets. Second,

we assume the packet loss is only caused by the congestion, as

the congestion control scheme in the current TCP also assumes

the packet loss is congestion-induced.

Therefore, we can formally define the repeated unknown

general-sum game with bandit feedback for end-to-end con-

gestion control as follows. Denote by N := {1, . . . , N}
the set of all flows in the game, and each flow n ∈ N is

associated with a (possibly different) finite set of actions (i.e.,

cwnd or srate) Wn := {Cmin, . . . , Cmax}, where Cmax is

the maximum cwnd (or srate) of flow n. Let Cn := |Wn|
be the total number of actions for flow n. In an actual

implementation, Cmin and Cmax can be either determined

by an initial probing phase, or determined by the network

physical-layer capabilities. The game is repeated for T rounds.

In each round t = 1, . . . , T , each flow selects a cwnd (or

srate) wt
n ∈ Wn. By the end of round t, each flow observes

feedback information (e.g., packet loss and round trip time)

and calculates utility ut
n ∈ [0, 1]. We only require that the

calculated utility should be normalized between 0 and 1, and

do not give any specific form of the utility function here

because we want our solution to be general enough for any

utility functions, so that the solution to the unknown games

can be acting as a building block for other congestion control

algorithms.

For any given network capacity and router policies, the util-

ity for each flow n is not only dependent on its own action wt
n

but also determined by the actions of all other flows. Denote

by Wt := {wt
n : ∀n ∈ N} the action profile in round t. To em-

phasize the dependency of the utility on all the flows, we fur-

ther write ut
n as un(W

t) or un(w
t
n,W

t
−n), where (wt

n;W
t
−n)

is an abbreviation of Wt := (wt
1, . . . , w

t
n, . . . , w

t
N ) with a

highlight of flow n’s action wt
n against other flows’ actions.

We do not directly model the flow importance (e.g., the QoS

requirements) in the game, as the importance of the flows is

taken into consideration by router policies. For example, one

can design a router policy that drops fewer packets for the

flows with a higher QoS requirement. As the focus of this

paper is the design of a solution for the unknown game with

any router policies, our solution still works even if the flows

are of different importance.

Note that each flow is in a bandit feedback setting, i.e.,

neither the actions nor the loss of other flows can be observed,

and each flow n can only observe the information such as

packet loss and round trip time to calculate its own utility

for the chosen cwnd (or srate). Also, neither the number of

flows nor the router policy is known a priori to each flow.

The reason for considering such a limited information setting

is to make the model more realistic so that our algorithm is

more deployable to the end systems without modifying the

intermediate nodes.

B. Problem Formulation

The goal of each flow in the unknown general-sum games

with bandit feedback is to accumulate as many utilities as

possible without getting the network congested. Network con-

gestion results in packet loss and queuing delay, which further

reduces the utilities for each flow. Such a goal can be easily

achieved if a router can act as a central controller to allocate

cwnd (or srate) for each flow by sending control messages.

For example, if all the N flows are of the same importance,

i.e., all the N flows have the same QoS requirements, then the

optimal srate for each flow is C/N , where C is the network

capacity. To accommodate more general situations where the

importance of flows can be different or time-varied, we use the

notion of ε-correlated equilibrium to measure the optimality

of a solution, as defined below.

Definition 1. Let P be a joint probability distribution over
W , where W :=

∏
n∈N

Wn is the space spanned by all

combinations of flows’ actions. We say P is an ε-correlated
equilibrium if the expected incentive for each flow n to deviate
from action w to another action w′ is no more than ε ≥ 0,
i.e., ∀n ∈ N , we have∑

(w;W−n)∈W
P(W) (un(w

′;W−n)− un(W)) ≤ ε. (1)

Intuitively, the router draws an action profile from P and

privately recommends the srate to each flow. For example, in
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the case of flows with equal importance, P(wn = C
N , ∀n ∈

N ) = 1 and the probabilities for drawing other profiles are

equal to 0. As no flow will gain more than ε to choose a

different srate, provided that other flows follow the router’s

recommendation, such a P is an ε-correlated equilibrium.

Compared with other forms of equilibria, correlated equilib-

rium considers the joint instead of the marginal distribution of

the action space and does not assume independence among

different action sets. Thus, correlated equilibrium is more

general and useful.

However, the goal of each flow to accumulate maximum

utilities becomes more challenging when each flow in the

unknown games makes decisions independently. The problem

of learning for unknown general-sum games is stated as

follows: When the only information revealed to each flow is

the utility of its chosen cwnd (or srate) in each round, is there

any algorithm that can help each flow accumulate more utilities

and converge to the ε-correlated equilibrium as if there were

a central controller?

More specifically, the ability to accumulate more utilities is

measured by the external regret, which is defined to be the

maximum performance loss between a learning algorithm and

a set of competitors always playing a fixed action throughout

the game. Let 1[wt
n = w] be the indicator function that returns

1 if w is the chosen cwnd (or srate) in round t by flow n and

0 otherwise. The external regret Rext
n (T ) for flow n by the

end of round T is defined as

Rext
n (T ) := max

w′∈Wn

T∑
t=1

un(w
′;Wt

−n)−
T∑

t=1

∑
w∈Wn

1[wt
n = w]un(w;W

t
−n),

(2)

On the other hand, we need to make sure that if all flows

play the algorithm, the empirical distribution of the joint

actions, denote by P̂T (W) := 1
T

T∑
t=1

Pt (Wt = W) ,W ∈ W ,

is an ε-correlated equilibrium defined in (1), where Pt is the

joint distribution of actions in round t. Such an ability is

measured by the internal regret [34], [49], which compares

the actions of a flow in a pair-wise manner:

Rint
n (T ) := max

w,w′∈Wn

T∑
t=1

rt(w,w′),n, (3)

where

rt(w,w′),n := 1[wt
n = w]

(
un(w

′;Wt
−n)− un(w;W

t
−n)
)

is the instantaneous regret for flow n of having played arm

w instead of arm w′ in round t. In Theorem 2, we show

that if all flows play an internal-regret-minimizing algorithm

together, the empirical distribution of their joint actions is an

ε-correlated equilibrium.

To minimize both external regret and internal regret at the

same time, we introduce a more general notion of regret, called

the swap regret [24]. By defining a swap function Fn for each

agent n that maps one cwnd (or srate) w ∈ Wn to another

cwnd (or srate) w′ ∈ Wn and denoting by Fn a finite set

of Fn, the swap regret for flow n with Fn up to round T is

defined as follows:

Rswa
n (T,Fn) = max

F∈Fn

T∑
t=1

∑
w∈Wn

1[wt
n = w]un(F (w);Wt

−n)−
T∑

t=1

∑
w∈Wn

1[wt
n = w]un(w;W

t
−n).

(4)

We can boil down the swap regret to the external regret by

letting Fn := {Fw : ∀w ∈ Wn}, where Fw : Wn →
w. The internal regret can be obtained by letting Fn :=
{F(w,w′) : ∀w,w′ ∈ Wn}, where F(w,w′)(w) = w′ and

F(w,w′)(w
′′) = w′′ for any other w′′ ∈ Wn. Thus, a no-

swap-regret learning algorithm has a bounded performance gap

from (Cn)
Cn competitors because there can be up to (Cn)

Cn

possible mappings in Fn, while there are only Cn and C2
n

mappings for external and internal regrets, respectively.

Therefore, we want to design an algorithm that can mini-

mize the swap regret. Key notations for the whole paper are

summarized in Table I.

TABLE I: Summary of Key Notations

Notations Definition
N ; N The number of flows; the set of all the flows
Wn; W The action set for flow n; the space of all

combinations of flows’ actions
Cn The number of actions for flow n

W;Wt An action profile; an action profile in round t
un(Wt); un(W) The utility for flow n in round t given action

profile Wt; the expected utility for flow n
conditioned on the action profile W

t; T The round of time; the total number of rounds
P t
n := {ptw : ∀w ∈ Wn} The probability distribution over Wn for

mixed strategies
wt

n The cwnd selected by flow n in round t
Rext

n (T ); Rint
n (T ); Rswa

n (T ) The external, internal and swap regret for flow
n up to round T

Qt
n,w A meta-distribution in round t, i.e., Qt

n,w :=[
qt
w,w′

]
w′∈Wn

Qt
n The meta-distribution matrix with each row

being a meta-distribution Qt
n,w

P̂T The empirical distribution of joint actions of
all flows over T rounds

IV. THE LUC ALGORITHM

To address the problem of learning for the repeated un-

known general-sum game with bandit feedback for end-to-

end congestion control, one must balance the tradeoff between

exploration and exploitation. The exploration means trying

different actions to know more about the payoff for each

action, and the exploitation means playing more often with

the actions that might be optimal. Such a tradeoff has been

thoroughly studied in the domain of multi-armed bandits. In

our problem, each agent (i.e., flow) can be regarded as playing

a non-stochastic multi-armed bandit against a non-oblivious

adversary [48], as the utility for an agent is determined by

all agents (flows). To tackle the non-oblivious adversary, one

must randomize his/her decisions.

Therefore, the LUC algorithm uses a mixed strategy to

choose actions, i.e., each w ∈ Wn is chosen with probability

ptw. Then, denote by P t
n :=

[
ptw
]
w∈Wn

the distribution on

the action set Wn, which is a row vector of the chosen

probabilities and
∑

w∈Wn

ptw = 1. The basic idea of LUC is

to assign more probabilities to the cwnd (or srate) with more

utilities.
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However, the solution in [48] can only minimize the external

regret, which is not enough for our objectives including the

convergence to correlated equilibria, as discussed in Sec. II.

One must minimize the internal regret [34] to achieve the

correlated equilibria.

To achieve our objectives, we adopt the swap-regret-

minimizing framework by [24] to minimize the swap regret,

which is the key to minimizing the external regret and internal

regret at the same time. We first need to model all the actions

in Wn to form a Markov chain with a transition matrix,

denoted by Qt
n, being updated by the end of each round with

the obtained utility. Then, the LUC algorithm chooses each

w ∈Wn according to the stationary distribution of the Markov

chain.

We create a transition probability vector called meta-

distribution for each w ∈ Wn, denoted by Qt
n,w :=[

qtw,w′
]
w′∈Wn

, where
∑

w′∈Wn

qtw,w′ = 1. The transition matrix

Qt
n is a Cn×Cn matrix with each row being Qt

n,w. Then, P t
n

is a solution to the following system of linear equations:

P t
n = P t

nQ
t
n. (5)

Intuitively, such a Markov chain models the situation where at

the beginning of a round, agent n first chooses w′, but before

sending packets, the agent regrets choosing w′ and chooses

w instead (w′, w ∈ Wn and they can be identical). In such a

way, the probability of directly choosing w ∼ P t
n is equivalent

to the probability of first choosing meta-distribution Qt
n,w′ for

any w′ ∼ P t
n and then choosing w ∼ Qt

n,w′ .

The update for the transition probability matrix is done by

the exponential-weight technique and the process is described

as follows. After obtaining utility xt
w′ := ut

n(w
′;Wt

−n) for the

chosen wt
n, the reward of choosing w′ instead of w is defined

as follows:

X̂t
w,w′ :=

1[wt
n = w′]ptw (xt

w′ + β)

ptw′
, (6)

which is a division of the total reward xt
w′ plus a bias

parameter β ∈ [0, 1] according to the stationary distribution.

Denote by Ŝt
w,w′ = Ŝt−1

w,w′+X̂t
w,w′ the variable for tracking

the biased estimated reward pair w,w′ ∈ Wn. Then, with

Ŝt
w,w′ , we can update the transition probability from w to w′

as follows:

qt+1
w,w′ = (1− λ)

exp (ηŜt
w,w′)∑

w′′∈Wn

exp (ηŜt
w,w′′)

+ λP0, (7)

where ηt is a non-increasing and positive parameter controlling

the learning rate, P0 is the initial distribution among actions

learned from past experience, and λ ∈ (0, 1) is a tradeoff

parameter. Thus, with P0, we can utilize offline training with

traces to improve learning efficiency. If learning from scratch,

we can let P0 be the uniform distribution among actions. The

possible values of those parameters are given in Theorem 1.

Note that Ŝt
w,w′ will not increase if w′ is not chosen in round

t because of the definition of X̂t
w,w′ . This shows that (7) helps

trade off between exploration and exploitation: if an action is

not chosen for a long time or the action always suffers a lower

loss, the probability of choosing it will also increase.

Algorithm 1 The LUC algorithm

1: procedure LUC(n,Wn, η, β, λ, P0)

// Initialization

2: Set q1w,w′ =
1
Cn

and Ŝ0
w,w′ = 0, ∀w,w′ ∈Wn

3: for t = 1, 2, 3, . . . do
4: Calculate the distribution on the action set by

solving the equation P t
n = P t

nQ
t
n

5: Choose a wt
n ∼ P t

n and send packets accordingly

6: Observe feedback and calculate utility ut
n for the

chosen wt
n

// Update each meta-distribution

7: for w ∈Wn do
8: Calculate X̂t

w,w′ , ∀w′ ∈Wn based on (6)

9: Ŝt
w,w′ = Ŝt−1

w,w′ + X̂t
w,w′ , ∀w′ ∈Wn

10: Calculate Qt+1
w based on (7)

The LUC algorithm is described in Alg. 1. At beginning, all

the meta-distributions are set with q1w,w′ =
1
Cn

, as we know

little about the utilities for each cwnd (or srate) in advance.

Then, initialize Ŝ0
w,w′ to be zero for all w,w′ ∈Wn, as shown

in Line 2. Lines 4 to 6 show the process of calculating the

distribution and observing the utility. The update for meta-

distributions is described in Lines 7 to 10.

V. ANALYTICAL RESULTS

A. Regret Bound

Recall that Cn is the number of actions in Wn. Then,

the swap regret defined in (4) for a flow playing the LUC

algorithm is bounded by the following theorem.

Theorem 1. Let P0 be a uniform distribution, and let

δ ∈ (0, 1), β =
√

ln(2Cnδ−1)
T , η = 0.25

√
lnCn

T , and

λ = 0.5Cn

√
lnCn

T . When T ≥ C2
n, the cumulative swap regret

for flow n playing the LUC algorithm over T rounds is upper
bounded by O(Cn

√
T log(Cn/δ)) with probability at least

1− δ.

Proof Sketch. We need to prove the instantaneous regret

bound for the swap regret, which is a stronger notion than

the expected regret bound. However, the existing analysis

techniques for the swap-regret-minimizing framework by [24]

are only for the expected regret bound. Thus, we give a novel

martingale-based analysis to derive a high-probability bound

for any instantaneous actions and rewards.

In addition, we take the randomness of all flows into consid-

eration. Although the proof is for each agent, the martingale

sequence constructed in the proof is with respect to the past

history of all flows. In the following, we omit subscript n in

some notations for brevity.
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The proof starts with a key step to decompose the swap

regret bound as follows for any swap function F ∈ F such

that F (w) ∈Wn:

max
F∈F

T∑
t=1

∑
w∈Wn

1[wt
n = w]xt

F (w) −
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

w

= max
F∈F

[
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

F (w) −
T∑

t=1

∑
w∈Wn

ptwx
t
F (w)

]

+

[
T∑

t=1

∑
w∈Wn

ptwx
t
F (w) −

T∑
t=1

∑
w∈Wn

∑
w′∈Wn

qtw,w′X̂
t
w,w′

]

+
T∑

t=1

[ ∑
w∈Wn

∑
w′∈Wn

qtw,w′X̂
t
w,w′ − 1[wt

n = w]xt
w

]
,

(8)

where we have decomposed the regret into three groups of

terms.

For the first group of terms, we construct a martingale

difference sequence, and apply Azuma’s inequality to bound

the term with a high probability.

For the second group of terms, we need to fur-

ther decompose qtw,w′ into the combination of q̂tw,w′ :=
exp (ηŜt

w,w′ )∑
w′′∈Wn

exp (ηŜt
w,w′′ )

and P0. The key to bounding this

term is to utilize the updating property for q̂tw,w′ to

bound the difference between
T∑

t=1

∑
w∈Wn

∑
w′∈Wn

qtw,w′X̂
t
w,w′

and
T∑

t=1

∑
w∈Wn

max
w′∈Wn

X̂t
w,w′ . Then, by constructing a super-

martingale difference sequence, we can further bound the

whole group of terms.

The third group of terms can be easily bounded by utilizing

the property that ptw′ :=
∑

w∈Wn

ptwq
t
w,w′ .

Note that Theorem 1 works for each flow playing the

LUC algorithm. As each flow can be regarded as playing

the adversarial multi-armed bandit problem [48], we can

compare our results with the one in [48]. The key part of

the analysis is to bound the regret with the swap functions

instead of a fixed action in the external-regret analysis in [48],

which guarantees the convergence to correlated equilibrium

as discussed in Theorem 2. Furthermore, the analysis of our

regret bound considers the randomness of all agent’s actions.

More importantly, we give a high-probability bound for the

instantaneous swap regret, which is stronger than the expected

regret studied in the literature.

If considering the time-averaged swap regret, LUC has

an upper bound for the time-averaged swap regret of

O(Cn

√
logCn)
T . This means if playing LUC for a long time,

both the external regret and internal regret are minimized, i.e.,

the time-averaged external regret and internal regret vanish

asymptotically.

Regarding the optimality of the convergence rate, although

our upper bound has a gap of O(
√
Cn) from the lower

bound [25] of Ω(
√
TCn logCn), it is the best result so far

for the exponential-weighting-based algorithm with the utility

ranging in [0, 1]. However, the lower bound in [25] is for the

full-information feedback, and it still remains an open problem

whether the upper bound is tight or the lower bound is tight

for the bandit feedback.

B. Convergence to Correlated Equilibria

Theorem 2 shows that the system can converge to an ε-
correlated equilibrium if every flow in the network plays

the LUC algorithm, by using the fact that the time-averaged

internal-regret of each flow vanishes asymptotically over

rounds.

Theorem 2. If every flow n ∈ N plays the LUC algorithm for
T rounds, then the empirical distribution of the joint actions
played by all flows P̂T is an ε-correlated equilibrium with
probability at least 1− δ for δ ∈ (0, 1).

Proof. As explained in Sec. III, the swap regret can also boil

down to the internal regret. By the swap-regret bound proved

in Theorem 1 and the union bound over all flows, LUC has

the internal regret for each flow n bounded for any action

pairs w,w′ ∈ Wn with the probability at least 1 − δ for any

δ ∈ (0, 1) and n ∈ N :

T∑
t=1

rt(w,w′),n ≤ O(max
n∈N

Cn

√
T log(CnN/δ)).

Dividing both sides by T , and recalling that P̂T (W) :=

1
T

T∑
t=1

1 [Wt = W] ,W ∈ W , we have for any flow n ∈ N
playing LUC and for any w,w′ ∈Wn∑
W:wn=w

P̂(W) (un (w
′;W−n)− un (W)) = O(max

n∈N
Cn

√
log(CnN/δ)

T
),

which coincides with the definition of the ε-correlated equi-

libria in Sec. III by letting ε = O(max
n∈N

Cn

√
log(CnN/δ)

T ).

The above theorem implies the existence of correlated

equilibrium, as ε → 0 when T → ∞. If every flow involved

in the game plays the LUC algorithm together, the following

corollary guarantees that the ε-correlated equilibrium can be

found in a polynomial number of rounds in expectation.

Corollary 1. Let δ ∈ (0, 1). Then, with probability at least
1− δ, after T = O(max

n∈N
C2

n log(CnN/δ)
ε2 ) rounds, the empirical

distribution P̂T of the joint actions played by all flows with the
LUC algorithm is an ε-correlated equilibrium for the unknown
general-sum game between multiple flows.

Proof. By Theorem 2, with probability at least 1− δ, we can

find an ε-correlated equilibrium for a game with N flows in

T rounds. Then, solve the following equation for ε:

ε = O(max
n∈N

Cn

√
log(CnN/δ)

T
),

which gives T = O(max
n∈N

C2
n log(CnN/δ)

ε2 ).
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Thus, with the LUC algorithm played by all flows, corre-

lated equilibria can be achieved with theoretical guarantees.

C. Time and Space Complexity

In each round, the most time-consuming parts are the

calculation of the stationary distribution for the Markov chain,

and the updating of Cn meta-distributions. Regarding the

calculation of the stationary distribution for the Markov chain,

each flow needs O(C2
n) time for Cn states [50]. Then, as for

updating the meta-distributions, each meta-distribution needs

O(Cn) time to update Cn cwnd (or srate). Therefore, the time

complexity of LUC is O(C2
n). Regarding the space complexity,

each meta-distribution requires O(Cn) space for Cn actions.

Therefore, the space complexity for LUC is O(C2
n) for Cn

meta-distributions.

As analyzed above, both the time and space complexities

increase quadratically only with Cn, and are not affected by

the scale of the network. Therefore, we can design a smaller

action space for each flow in practice to make the algorithm

more efficient. For example, converting the actions from the

set of cwnd to the change of the cwnd (e.g., increase, decrease,

or remain the same value).

VI. EXPERIMENTS

We have implemented the proposed LUC algorithm with

the same but normalized utility function defined in [20]

through the Linux kernel 5.4.0 based on the congestion

control plane [26], a new API for writing congestion con-

trol algorithms. In this section, we start with fairness-related

experiments in Mininet [51], where LUC is compared with

CUBIC [52] and BBR version 2 [53] (BBR2 for short in the

following). Then, we conduct trace-driven experiments with

Pantheon [27], an evaluation platform for congestion control

algorithms, with an additional comparison to PCC-Vivace [20].

We have released the source code for the experiments in

https://github.com/Zhiming-Huang/luc.
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Fig. 2: The experiment topology.

In the fairness-related experiments, two classic network

topologies recommended by IETF TCP evaluation suite [54]

are considered, i.e., the dumbbell and parking lot topologies,

as shown in Fig. 2. The bandwidth of all the links in both

topologies is 50 Mbps, and the delay of each link is shown in

the figures. For both topologies, the queue size on all the links

between two routers is 100 packets. In the dumbbell topology,

there are two flows from h1 to h3 and from h2 to h4, sharing

the same link r1-r2. In the parking lot topology, there are three

flows from h1 to h6, from h2 to h3, and from h4 to h5. We can

see that the flow from h1 to h6 competes with both the other

two flows, while the other two flows are independent of each

other. In the experiments, we use iperf to generate a 30s test

for the performance of the three congestion control algorithms.

As iperf outputs the averaged results (i.e., throughput and

RTT) every 1s, the points at time 0s in Figs. 3 to 5 are the

averaged results in the initial interval from 0s to 1s, and then

we use exponentially weighted moving average technique to

smooth the results in the following time.

In the trace-driven experiments, we use the US cellular

network traces (i.e., T-mobile and Verizon) recorded by the

saturator tool [55] while driving. These traces represent the

time-varying capacity of the networks experienced by a mobile

user, so we can test the adaptability of congestion control

algorithms in such network environments.

A. Dumbbell Results

We first test the scenario where the two flows are ho-

mogeneous, i.e., both the flows adopt the same congestion

control algorithm. The throughput and RTT results for the

homogeneous flows are shown in Figs. 3a, 3b, 3f and 3g.

As we can see, when both flows adopt LUC, they can achieve

a fair performance, because LUC can guarantee a correlated

equilibrium if played by all the flows. However, the other

two congestion control algorithms, i.e., CUBIC and BBR2,

cannot guarantee a fair share between the two flows. This

is because of the intrinsic property of the two congestion

control algorithms (i.e., deterministic strategy) and the subtle

difference in the flow start time, although we have endeavored

to minimize this difference in the experiments by using a script

to control all nodes. The flow on h1 slightly starts ahead of

the flow on h2, and thus the flow on h1 with CUBIC or

BBR2 will first occupy a bit more link bandwidth. Regarding

RTT, we can see that LUC has a lower RTT than CUBIC.

On the other hand, we can observe LUC performs better than

BBR2 and CUBIC in the homogeneous setting in terms of

throughput, while having a higher RTT. This is because LUC

does not explicitly incorporate queuing models like BBR2

does, and the randomized action selection in LUC makes it

less conservative when it comes to utilizing network buffers,

leading to increased queue lengths.

We also conduct experiments for the heterogeneous flow,

i.e., the two flows adopt different congestion control algo-

rithms, as shown in Figs. 3c to 3e and Figs. 3h to 3j. When

BBR2 and LUC compete with each other, BBR2 prevails at

first but their gap gradually decreases due to the benefits

of learning. On the other hand, LUC can achieve a similar

throughput as CUBIC. Regarding RTT, we can observe in

Fig. 3h that at the first few intervals, both LUC and BBR2

suffer a high RTT because they are competing with each other
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Fig. 3: The experiment results for the dumbbell topology.

to exhaust the network bandwidth. However, the RTTs for both

algorithms are decreasing over time, meaning that the network

is getting less congested. Therefore, LUC is friendly to and

competitive with other TCP flows.

B. Parking Lot Results

The results of the parking lot topology are shown in Figs. 4

and 5. Similar to the dumbbell topology, we first test the

homogeneous flows in the parking lot topology, as shown in

Figs. 4a to 4c and Figs. 5a to 5c. The flow from h1 to h6 will

suffer a loss if any one of the other two flows suffers, i.e.,

the flow from h1 to h6 has a higher probability of suffering

a loss and thus results in a lower throughput than the other

two flows. As we can see, when all the three flows play the

same congestion control algorithm, LUC always guarantees

that the performance gaps between flows are similar and not

excessive. On the other hand, CUBIC and BBR2 have a large

performance gap between flow h1 to h6 and the other two

flows. This reflects LUC’s ability to achieve a stable correlated

equilibrium. Also, CUBIC and BBR2 incur a higher RTT than

LUC, because CUBIC and BBR2 will increase the srate to

probe for possible higher bandwidth, while LUC can maintain

a low RTT.

Then, we perform three different heterogeneous flow set-

tings in the parking lot topology for a different 4-hop flow

(i.e., flow h1 to h6). In the first heterogeneous flow setting,

flow h1 to h6 adopts LUC, flow h2 to h3 adopts CUBIC,

and flow h4 to h5 adopts BBR2, and the results are shown in

Figs. 4d and 5d. In the second setting, the 4-hop flow h1 to

h6 adopts CUBIC, flow h2 to h3 adopts BBR2 and flow h4

to h5 adopts LUC, as shown in Figs. 4e and 5e. In the third

setting, the 4-hop flow h1 to h6 would be BBR2, and the other

two flows adopt CUBIC and LUC, respectively, as shown in

Figs. 4f and 5f. We can see that when the 4-hop flow adopts

LUC or CUBIC, it will concede the link bandwidth to the other

two flows, but LUC still maintains a higher throughput than
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Fig. 4: The throughput results for the parking lot topology.
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Fig. 5: The RTT results for the parking lot topology.
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that of CUBIC, as shown in Figs. 4d and 4e. However, when

the 4-hop flow adopts BBR2, it will still occupy a comparable

link bandwidth with the other two flows, as shown in Fig. 4f.

Overall, from the above experiments, we can see that LUC is

friendly but competitive to other flows, and maintains fairness

in allocating the link bandwidth.

C. Trace-driven Experiments

(a) T-mobile LTE Network (b) Verizon LTE Network

Fig. 6: The trace-driven experiment results on Pantheon.

For each trace, we did five independent runs of experiments,

and the mean results for the trace-driven experiments produced

by Pantheon are shown in Fig. 6. Pantheon evaluates an

algorithm based on two metrics, i.e., mean throughput and

95th-percentile one-way delay. We can see that LUC can

better balance the tradeoff between the average throughput and

delay in these two metrics for the T-mobile network than the

other three algorithms. In the Verizon LTE network, LUC still

performs better than TCP CUBIC and Vivace. Although BBR2

is better than LUC in the Verizon LTE network, from the

emulation results in Mininet, we know that the main advantage

of LUC over BBR2 is the guarantee of fair allocation for

multiple flows in the network. For both traces, PCC-Vivace

performs not as well as other algorithms, as PCC-Vivace used

by Pantheon runs in user space instead of kernel space, which

may incur some performance loss. On the other hand, as

Pantheon only supports evaluation for a single flow, our future

work remains to conduct trace-driven emulations on multiple

flows. Overall, LUC can guarantee good performance in a

dynamic network environment.

VII. CONCLUSION

In this paper, we formulated the end-to-end congestion

control as a repeated unknown general-sum game with bandit

feedback, and have proposed the LUC algorithm with provable

theoretical guarantees. Furthermore, we have implemented

LUC through the Linux kernel and performed extensive ex-

periments to verify the performance of LUC. For our future

research, we would like to develop more realistic game models

where we relax the assumption that all flows finish an inter-

action within one round, and study whether an equilibrium

for such game models exists and can be obtained by efficient

learning algorithms. We are also interested in using LUC as

a building block to improve the current congestion control

algorithms, such as BBR2.

APPENDIX

Let Ft := σ ({W1, . . . ,Wt}) be the σ-algebra generated

by previous actions of all agents by the end of round t. Then,

denote by Et[·] := Et[· | Ft−1] the expectation conditioned

on the Ft−1. Let xt
w := ut

n(w;W
t
−n). Denote by ŜT

w :=
T∑

t=1

∑
w′∈Wn

qtw,w′X̂
t
w,w′ and ST

w :=
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

w.

As the proof is for a single agent n, we will omit subscript n
in some notations for brevity.

Proof of Theorem 1. The instantaneous swap regret can be

decomposed as follows

max
F∈F

T∑
t=1

∑
w∈Wn

1[wt
n = w]xt

F (w) −
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

w

= max
F∈F

[
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

F (w) −
T∑

t=1

∑
w∈Wn

ptwx
t
F (w)

]

+

⎡
⎢⎢⎢⎢⎢⎣

T∑
t=1

∑
w∈Wn

ptwx
t
F (w) −

T∑
t=1

∑
w∈Wn

∑
w′∈Wn

qtw,w′X̂
t
w,w′︸ ︷︷ ︸

=:(a)

⎤
⎥⎥⎥⎥⎥⎦

+

T∑
t=1

⎡
⎢⎢⎢⎢⎢⎣
∑

w∈Wn

∑
w′∈Wn

qtw,w′X̂
t
w,w′ − 1[wt

n = w]xt
w︸ ︷︷ ︸

=:(b)

⎤
⎥⎥⎥⎥⎥⎦ ,

(9)

First, notice that
∑

w∈Wn

1[wt
n = w]xt

F (w) −
∑

w∈Wn

ptwx
t
F (w) is

a martingale difference sequence, because
∑

w∈Wn

Et

[
1[wt

n = w]xt
F (w)

]
− ∑

w∈Wn

Et

[
ptwx

t
F (w)

]
=
∑

w∈Wn

Et

[
ptwx

t
F (w) − ptwx

t
F (w)

]
= 0

Furthermore, the martingale difference sequence is bounded:∣∣∣∣∣ ∑
w∈Wn

1[wt
n = w]xt

F (w) −
∑

w∈Wn

ptwx
t
F (w)

∣∣∣∣∣ ≤ 1,

where the inequality is due to that
∑

w∈Wn

1[wt
n = w]xt

F (w) ∈
[0, 1] and

∑
w∈Wn

ptwx
t
F (w) ∈ [0, 1]. Let δ′ ∈ (0, 1). By applying

Azuma’s inequality, we have that with probability at least 1−
δ′,
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

F (w)−
T∑

t=1

∑
w∈Wn

ptwx
t
F (w) ≤ 2

√
T ln

1

δ′
.

(10)
Then, we show how to bound (b) first as follows:

(b) =
∑

w∈Wn

∑
w′∈Wn

qtw,w′X̂
t
w,w′ −

∑
w∈Wn

1[wt
n = w]xt

w

=
∑

w∈Wn

∑
w′∈Wn

ptwq
t
w,w′(1[w

t
n = w′]xt

w′ + β)

ptw′
−
∑

w∈Wn

1[wt
n = w]xt

w

=
∑

w′∈Wn

(1[wt
n = w′]xt

w′ + β)−
∑

w∈Wn

1[wt
n = w]xt

w = Cnβ,
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where the third equality is due to the definition of ptw in (5).

Next, we show how to bound (a) as follows. Let q̂tw,w′ :=
qt
w,w′−λP0

1−λ be the distribution without mixing with P0. Then,

we obtain:

− (a) = −
∑

w∈Wn

T∑
t=1

∑
w′∈Wn

qtw,w′X̂
t
w,w′ = −

∑
w∈Wn

T∑
t=1

∑
w′

(1− λ)q̂tw,w′X̂
t
w,w′ −

∑
w∈Wn

T∑
t=1

∑
w′

λP0X̂
t
w,w′

≤ −
∑

w∈Wn

T∑
t=1

∑
w′

(1− λ)q̂tw,w′X̂
t
w,w′ =

∑
w∈Wn

T∑
t=1

1− λ

η

(
ln
∑

w′′∈Wn

q̂tw,w′′ exp

(
η(X̂t

w,w′′ −
∑

w′∈Wn

q̂tw,w′X̂
T
w,w′)

))
︸ ︷︷ ︸

=:(c)

−
∑

w∈Wn

T∑
t=1

1− λ

η

(
ln
∑

w′′∈Wn

q̂tw,w′′ exp
(
ηX̂t

w,w′′

))
.

(11)

Then, notice that qtw,w′ ≥ λP0 = λ
Cn

and by the fact that

(1 + β)ηCn ≤ λ, we further have that

ηX̂t
w,w′′ =

ηptwq
t
w,w′′(1[w

t
n = w]xt

w + β)

ptw′′q
t
w,w′′

≤ ptwq
t
w,w′′(1[w

t
n = w]xt

w + β)ηCn

ptw′′λ
≤ 1.

Then, by using inequality lnx ≤ x−1 and exp (x) ≤ 1+x+x2

for all x ≤ 1, we have (c) bounded as follows:

(c) = ln
∑

w′′∈Wn

q̂tw,w′′ exp
(
ηX̂t

w,w′′

)
− η
∑
w′

q̂tw,w′X̂
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(
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)
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q̂tw,w′(ηX̂
t
w,w′)

2 − 1− η
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t
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η2X̂t
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1 + β

1− λ
η2X̂t
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where the last inequality is due to that q̂tw,w′ ≤
qt
w,w′
1−λ .

Substituting the above equation in (11) and recalling that

q̂tw,w′ =
exp

(
ηŜt−1

w,w′
)

∑
w′′

exp
(
ηŜt−1

w,w′′
) , we obtain for any F ∈ F that
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η
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(12)

where the last inequality is due to that (1 + β)ηCn ≤ λ ≤ 1
2 .

Notice that for any w,w′ ∈Wn, and by the fact that exp(x) ≤
1 + x+ x2 for x ≤ 1 we have that

Et exp
(
βptwx

t
w′ − βX̂t

w,w′

)
= Et exp

(
ptwβx

t
w′ − β

1[wt
n = w′]ptwx

t
w′

ptw′
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· exp

(
− β2

ptw′

)
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(
1 +Et
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ptwβx

t
w′ − β
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w′
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]
+Et
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ptwβx
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]2)
· exp

(
− β2

ptw′

)

≤
(
1 +

β2

ptw′

)
· exp

(
− β2

ptw′

)
≤ 1,

where the last inequality is due to 1 + x ≤ exp(x). Thus, we

have that

E

(
β

T∑
t=1

ptwx
t
w′ −

T∑
t=1

βX̂t
w,w′

)
≤ 1,

and by Markov inequality, we obtain with probability at least

1− δ′ that

T∑
t=1

ptwx
t
w′ −

T∑
t=1

X̂t
w,w′ ≤ β−1 ln

1

δ′
,

where δ′ ∈ (0, 1). Then, by union bound, we can continue to

bound (12) with probability at least 1 − δ for any δ ∈ (0, 1)
as follows:

−(a) ≤ −(1− (1 + β)ηCn − λ)

( ∑
w∈Wn

T∑
t=1

ptwx
t
F (w) −

∑
w∈Wn

β−1 ln
(Cn))

2

δ

)
+

Cn lnCn

η
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Cn lnCn

η
+ 2Cnβ

−1 ln
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δ
−
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∑
w∈Wn

ptwx
t
F (w),

where the last inequality is due to the fact that (1+β)ηCn ≤
λ ≤ 1/2, and xt

F (w) ≤ 1.

By using the union bound to combine (10), and substituting

the above results into (9), we have with probability at least

1− δ that

max
F∈F

T∑
t=1

Et

∑
w∈Wn

1[wt
n = w]xt

F (w) −
T∑

t=1
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w∈Wn
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T ln
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.

The theorem follows by letting β =
√

ln(2Cnδ−1)
T , η =

0.25
√

lnCn

T , and λ = 0.5Cn

√
lnCn

T .
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